
1 

 

UNIT I 

1.1 Benefits and uses of data science and big data 

Data science and big data are used almost everywhere in both commercial and 

noncommercial settings. Commercial companies in almost every industry use data science 

and big data to gain insights into their customers, processes, staff, completion, and products. 

Many companies use data science to offer customers a better user experience, as well as to 

cross-sell, up-sell, and personalize their offerings. A good example of this is Google AdSense, 

which collects data from internet users so relevant commercial messages can be matched to 

the person browsing the internet. Human resource professionals use people analytics and text 

mining to screen candidates, monitor the mood of employees, and study informal networks 

among coworkers. People analytics is the central theme in the book Moneyball: The Art of 

Winning an Unfair Game. In the book (and movie) we saw that the traditional scouting 

process for American baseball was random, and replacing it with correlated signals changed 

everything. Relying on statistics allowed them to hire the right players and pit them against 

the opponents where they would have the biggest advantage. Financial institutions use data 

science to predict stock markets, determine the risk of lending money, and learn how to 

attract new clients for their services. Governmental organizations are also aware of data’s 

value. Many governmental organizations not only rely on internal data scientists to discover 

valuable information, but also share their data with the public. You can use this data to gain 

insights or build data-driven applications. Data.gov is but one example; it’s the home of the 

US Government’s open data. A data scientist in a governmental organization gets to work on 

diverse projects such as detecting fraud and other criminal activity or optimizing project 

funding. well-known example was provided by Edward Snowden, who leaked internal 

documents of the American National Security Agency and the British Government 

Communications Headquarters that show clearly how they used data science and big data to 

monitor millions of individuals. Those organizations collected 5 billion data records from 

widespread applications such as Google Maps, Angry Birds, email, and text messages, among 

many other data sources.  Nongovernmental organizations (NGOs) are also no strangers to 

using data. They use it to raise money and defend their causes. The World Wildlife Fund 

(WWF), for instance, employs data scientists to increase the effectiveness of their fundraising 

efforts. Universities use data science in their research but also to enhance the study 

experience of their students. The rise of massive open online courses (MOOC) produces a lot 

of data, which allows universities to study how this type of learning can complement 

traditional classes. 

1.2 Facets of data 

In data science and big data you’ll come across many different types of data, and each of 

them tends to require different tools and techniques. The main categories of data 

are these: 

■ Structured 

■ Unstructured 

■ Natural language 

■ Machine-generated 

■ Graph-based 

■ Audio, video, and images 

■ Streaming 

 Structured data 

Structured data is data that depends on a data model and resides in a fixed field within a 

record. As such, it’s often easy to store structured data in tables within databases or Excel 



2 

 

files (figure 1.1). SQL, or Structured Query Language, is the preferred way to manage and 

query data that resides in databases. You may also come across structured data that might 

give you a hard time storing it in a traditional relational 

database. Hierarchical data such as a family tree is one such example.  

 
1.2.2 Unstructured data 

Unstructured data is data that isn’t easy to fit into a data model because the content is 

context-specific or varying. One example of unstructured data is your regular email (figure 

1.2). Although email contains structured elements such as the sender, title, and body text, it’s 

a challenge to find the number of people who have written an email complaint about a 

specific employee because so many ways exist to refer to a person, for example. The 

thousands of different languages and dialects out there further complicate this. 

 



3 

 

1.2.3 Natural language 

Natural language is a special type of unstructured data; it’s challenging to process because it 

requires knowledge of specific data science techniques and linguistics. The natural language 

processing community has had success in entity recognition, topic recognition, 

summarization, text completion, and sentiment analysis, but models trained in one domain 

don’t generalize well to other domains. Even state-of-the-art techniques aren’t able to 

decipher the meaning of every piece of text. This shouldn’t be a surprise though: humans 

struggle with natural language as well. It’s ambiguous by nature. 

1.2.4 Machine-generated data 

Machine-generated data is information that’s automatically created by a computer, process, 

application, or other machine without human intervention. Machine-generated data is 

becoming a major data resource and will continue to do so. IDC (International Data 

Corporation) has estimated there will be 26 times more connected things than people in 2020. 

This network is commonly referred to as the internet of things. The analysis of machine data 

relies on highly scalable tools, due to its high volume and speed. The machine data shown in 

figure 1.3 would fit nicely in a classic table-structured database. 

 
1.2.5 Graph-based or network data 

“Graph data” can be a confusing term because any data can be shown in a graph. “Graph” in 

this case points to mathematical graph theory. In graph theory, a graph is a mathematical 

structure to model pair-wise relationships between objects. Graph or network data is, in short, 

data that focuses on the relationship or adjacency of objects. The graph structures use nodes, 

edges, and properties to represent and store graphical data. Graph-based data is a natural way 

to represent social networks, and its structure allows you to calculate specific metrics such as 

the influence of a person and the shortest path between two people. Examples of graph-based 

data can be found on many social media websites. 



4 

 

 
Graph databases are used to store graph-based data and are queried with specialized query 

languages such as SPARQL. 

1.2.6 Audio, image, and video 

Audio, image, and video are data types that pose specific challenges to a data scientist. Tasks 

that are trivial for humans, such as recognizing objects in pictures, turn out to be challenging 

for computers. MLBAM (Major League Baseball Advanced Media) announced in 2014 that 

they’ll increase video capture to approximately 7 TB per game for the purpose of live, in-

game analytics. High-speed cameras at stadiums will capture ball and athlete movements to 

calculate in real time, for example, the path taken by a defender relative to two baselines. a 

company called DeepMind succeeded at creating an algorithm that’s capable of learning how 

to play video games. This algorithm takes the video screen as input and learns to interpret 

everything via a complex process of deep learning. It’s a remarkable feat that prompted 

Google to buy the company for their own Artificial Intelligence (AI) development plans. 

1.2.7 Streaming data 

While streaming data can take almost any of the previous forms, it has an extra property. The 

data flows into the system when an event happens instead of being loaded into a data store in 

a batch. Although this isn’t really a different type of data, Examples are the “What’s trending” 

on Twitter, live sporting or music events, and the stock market. 

 

1.3 The data science process 

The data science process typically consists of six steps. 

 
1.3.1 Setting the research goal 

Data science is mostly applied in the context of an organization. When the business asks you 

to perform a data science project, you’ll first prepare a project charter. This charter contains 

information such as what 



5 

 

you’re going to research, how the company benefits from that, what data and resources you 

need, a timetable, and deliverables. 

 

1.3.2 Retrieving data 

The second step is to collect data. You’ve stated in the project charter which data you need 

and where you can find it. In this step you ensure that you can use the data in your program, 

which means checking the existence of, quality, and access to the data. Data can also be 

delivered by third-party companies and takes many forms ranging from Excel spreadsheets to 

different types of databases. 

1.3.3 Data preparation 

Data collection is an error-prone process; in this phase you enhance the quality of the data 

and prepare it for use in subsequent steps. This phase consists of three subphases: data 

cleansing removes false values from a data source and inconsistencies across data sources, 

data integration enriches data sources by combining information from multiple data sources, 

and data transformation ensures that the data is in a suitable format for use in your models. 

1.3.4 Data exploration 

Data exploration is concerned with building a deeper understanding of your data. You try to 

understand how variables interact with each other, the distribution of the data, and whether 

there are outliers. To achieve this you mainly use descriptive statistics, visual techniques, and 

simple modelling. This step is also known as Exploratory Data Analysis. 

1.3.5 Data modeling or model building 

In this phase you use models, domain knowledge, and insights about the data you found in 

the previous steps to answer the research question. You select a technique from the fields of 

statistics, machine learning, operations research, and so on. Building a model is an iterative 

process that involves selecting the variables for the model, executing the model, and model 

diagnostics. 

1.3.6 Presentation and automation 

Finally, you present the results to your business. These results can take many forms, ranging 

from presentations to research reports. Sometimes you’ll need to automate the execution of 

the process because the business will want to use the insights you gained in another project or 

enable an operational process to use the outcome from your model. 

 

  



6 

 

2.1 Overview of the data science process 

 
1 The first step of this process is setting a research goal. The main purpose here is making 

sure all the stakeholders understand the what, how, and why of the project. In every serious 

project this will result in a project charter. 

2 The second phase is data retrieval. You want to have data available for analysis, so this step 

includes finding suitable data and getting access to the data from the data owner. The result is 

data in its raw form, which probably needs polishing and transformation before it becomes 

usable. 

3 Now that you have the raw data, it’s time to prepare it. This includes transforming the data 

from a raw form into data that’s directly usable in your models. To achieve this, you’ll detect 

and correct different kinds of errors in the data, combine data from different data sources, and 

transform it. If you have successfully completed this step, you can progress to data 

visualization and modeling. 



7 

 

4 The fourth step is data exploration. The goal of this step is to gain a deep understanding of 

the data. You’ll look for patterns, correlations, and deviations based on visual and descriptive 

techniques. The insights you gain from this phase will enable you to start modeling. 

5 Finally, we get to the sexiest part: model building (often referred to as “data modeling” 

throughout this book). It is now that you attempt to gain the insights or make the predictions 

stated in your project charter. Now is the time to bring out the heavy guns, but remember 

research has taught us that often (but not always) a combination of simple models tends to 

outperform one complicated model. If you’ve done this phase right, you’re almost done. 

6 The last step of the data science model is presenting your results and automating the 

analysis, if needed. One goal of a project is to change a process and/or make better decisions. 

You may still need to convince the business that your findings will indeed change the 

business process as expected. This is where you can 

shine in your influencer role. The importance of this step is more apparent in projects on a 

strategic and tactical level. Certain projects require you to perform the business process over 

and over again, so automating the project will save time. 

 

In reality you won’t progress in a linear way from step 1 to step 6. Often you’ll regress and 

iterate between the different phases. This process ensures you have a well-defined research 

plan, a good understanding of the business question, and clear deliverables before you even 

start looking at data. The first steps of your process focus on getting high-quality data as 

input for your models. This way your models will perform better later on. In data science 

there’s a well-known saying: Garbage in equals garbage out. 

 

 

 

Step 1: Defining research goals and creating 

a project charter 

A project starts by understanding the what, the why, and the how of your project (figure 2.2). 

What does the company expect you to do? And why does management place such a value on 

your research? Is it part of a bigger strategic picture or a “lone wolf” project originating from 

an opportunity someone detected? Answering these three questions (what, why, how) is the 

goal of the first phase, so that everybody knows what to do and can agree on the best course 

of action. The outcome should be a clear research goal, a good understanding of the context, 

well-defined deliverables, and a plan of action with a timetable. This information is then best 

placed in a project charter. 

Spend time understanding the goals and context of your research 

An essential outcome is the research goal that states the purpose of your assignment in a clear 

and focused manner. Understanding the business goals and context is critical for project 

success. 

Create a project charter 

Clients like to know upfront what they’re paying for, so after you have a good understanding 

of the business problem, try to get a formal agreement on the deliverables. All this 

information is best collected in a project charter 

 

A project charter requires teamwork, and your input covers at least the following: 

■ A clear research goal 

■ The project mission and context 

■ How you’re going to perform your analysis 

■ What resources you expect to use 



8 

 

■ Proof that it’s an achievable project, or proof of concepts 

■ Deliverables and a measure of success 

■ A timeline 

 

Step 2: Retrieving data 

The next step in data science is to retrieve the required data (figure 2.3). Sometimes you need 

to go into the field and design a data collection process yourself, but most of the time you 

won’t be involved in this step. Many companies will have already collected and stored the 

data for you, and what they don’t have can often be bought from third parties 

 
Data can be stored in many forms, ranging from simple text files to tables in a database. The 

objective now is acquiring all the data you need. This may be difficult, and even if you 

succeed, data is often like a diamond in the rough: it needs polishing to be of any use to you. 

Start with data stored within the company 

Your first act should be to assess the relevance and quality of the data that’s readily available 

within your company. Most companies have a program for maintaining key data, so much of 

the cleaning work may already be done. This data can be stored in official data repositories 

such as databases, data marts, data warehouses, and data lakes maintained by a team of IT 

professionals. The primary goal of a database is data storage, while a data warehouse is 

designed for reading and analyzing that data.A data mart is a subset of the data warehouse 

and geared toward serving a specific business unit. While data warehouses and data marts are 

home to preprocessed data, data lakes contains data in its natural or raw format. But the 

possibility exists that your data still resides in Excel files on the desktop of a domain expert. 

Don’t be afraid to shop around 

If data isn’t available inside your organization, look outside your organization’s walls. Many 

companies specialize in collecting valuable information. For instance, Nielsen and GFK are 

well known for this in the retail industry. Other companies provide data so that you, in turn, 

can enrich their services and ecosystem. Such is the case with Twitter, LinkedIn, and 

Facebook. 

 
Expect to spend a good portion of your project time doing data correction and cleansing, 

sometimes up to 80%. Most of the errors you’ll encounter during the data gathering phase are 

easy to spot, but being too careless will make you spend many hours solving data issues that 

could have been prevented during data import. You’ll investigate the data during the import, 

data preparation, and exploratory phases. During data retrieval, you check to see if the data is 



9 

 

equal to the data in the source document and look to see if you have the right data types. With 

data preparation, The focus is on the content of the variables: you want to get rid of typos 

and other data entry errors and bring the data to a common standard among the data sets. 

For example, you might correct USQ to USA and United Kingdom to UK. During the 

exploratory phase your focus shifts to what you can learn from the data. 

Step 3: Cleansing, integrating, and transforming data 

The data received from the data retrieval phase is likely to be “a diamond in the rough.” Your 

task now is to prepare it for use in the modelling and reporting phase. Doing so is 

tremendously important because your models will perform better and you’ll lose less time 

trying to fix strange output. Your model needs the data in a specific format, so data 

transformation will always come into play. 

 

2.4.1 Cleansing data 

Data cleansing is a subprocess of the data science process that focuses on removing errors in 

your data so your data becomes a true and consistent representation of the processes it 

originates from. By “true and consistent representation” we imply that at least two types of 

errors exist. The first type is the interpretation error, such as when you take the value in your 

data for granted, like saying that a person’s age is greater than 300 years. The second type of 

error points to inconsistencies between data sources or against your company’s standardized 

values. An example of this class of errors is putting “Female” in one table and “F” in another 

when they represent the same thing: that the person is female. Another example is that you 

use Pounds in one table and Dollars in another.  

Table 2.2 An overview of common errors 

 
Sometimes you’ll use more advanced methods, such as simple modeling, to find and identify 

data errors; We do a regression to get acquainted with the data and detect the influence of 

individual observations on the regression line. When a single observation has too much 

influence, this can point to an error in the data, but it can also be a valid point. 



10 

 

 

 
DATA ENTRY ERRORS 

Data collection and data entry are error-prone processes. They often require human 

intervention, and because humans are only human, they make typos or lose their 

concentration for a second and introduce an error into the chain. But data collected by 

machines or computers isn’t free from errors either. For small data sets you can check every 

value by hand. Detecting data errors when the variables you study don’t have many classes 

can be done by tabulating the data with counts - frequency table. 

 
Most errors of this type are easy to fix with simple assignment statements and if-then else 

rules: 

if x == “Godo”: 

x = “Good” 

if x == “Bade”: 

x = “Bad” 

REDUNDANT WHITESPACE 

Whitespaces tend to be hard to detect but cause errors like other redundant characters would. 

The cleaning during the ETL phase wasn’t well executed, and keys in one table contained a 

whitespace at the end of a string. This caused a mismatch of keys such as “FR ” – “FR”, 



11 

 

dropping the observations that couldn’t be matched. strip() function to remove leading and 

trailing spaces. 

 

FIXING CAPITAL LETTER MISMATCHES 

Capital letter mismatches are common. Most programming languages make a distinction 

between “Brazil” and “brazil”. 

you can solve the problem by applying a function that returns 

both strings in lowercase, such as .lower() in Python. “Brazil”.lower() == “brazil”.lower() 

should result in true. 

 

IMPOSSIBLE VALUES AND SANITY CHECKS 

Sanity checks are another valuable type of data check. Here you check the value against 

physically or theoretically impossible values. 

Sanity checks can be directly expressed with rules: 

check = 0 <= age <= 120 

 

OUTLIERS 

 

An outlier is an observation that seems to be distant from other observations or, more 

specifically, one observation that follows a different logic or generative process than the other 

observations. The easiest way to find outliers is to use a plot or a table with the minimum and 

maximum values. An example is shown in figure 2.6. The plot on the top shows no outliers, 

whereas the plot on the bottom shows possible outliers on the upper side when a normal 

distribution is expected. The high values in the bottom graph can point to outliers when 

assuming a normal distribution. 

 



12 

 

 
 

DEALING WITH MISSING VALUES 

 

Missing values aren’t necessarily wrong, but you still need to handle them separately; certain 

modeling techniques can’t handle missing values. 

 
DEVIATIONS FROM A CODE BOOK 

A code book is a description of your data, a form of metadata. It contains things such 

as the number of variables per observation, the number of observations, and what each 

encoding within a variable means. Example University exam Marksheet. 

A code book also tells the type of data you’re looking at: is it hierarchical, graph, something 

else? 

DIFFERENT UNITS OF MEASUREMENT 



13 

 

When integrating two data sets, you have to pay attention to their respective units of 

measurement. sets can contain prices per gallon and others can contain prices per liter. A 

simple conversion will do the trick in this case. 

DIFFERENT LEVELS OF AGGREGATION 

Having different levels of aggregation is similar to having different types of 

measurement. 

An example of this would be a data set containing data per week versus one containing data 

per work week. 

 

2.4.2 Correct errors as early as possible 

(i) Decision-makers may make costly mistakes on information based on incorrect data 

from applications that fail to correct for the faulty data. 

(ii) If errors are not corrected early on in the process, the cleansing will have to be done 

for every project that uses that data. 

(iii)Data errors may point to a business process that isn’t working as designed. 

(iv) Data errors may point to defective equipment, such as broken transmission lines and 

defective sensors. 

(v) Data errors can point to bugs in software or in the integration of software that may be 

critical to the company. 

2.4.3 Combining data from different data sources 

Your data comes from several different places, and in this substep we focus on integrating 

these different sources. 

You can perform two operations to combine information from different data sets.  

(i) The first operation is joining: enriching an observation from one table with 

information from another table.  

(ii) The second operation is appending or stacking: adding the observations of one table 

to those of another table. 

Joining Tables: 

 
  



14 

 

APPENDING TABLES 

 
USING VIEWS TO SIMULATE DATA JOINS AND APPENDS 

To avoid duplication of data, you virtually combine data with views. In the previous example 

we took the monthly data and combined it in a new physical table. 

 

 
2.4.4 Transforming data 

Certain models require their data to be in a certain shape. Transforming your data so it takes a 

suitable form for data modelling. 

 

TRANSFORMING DATA 

Relationships between an input variable and an output variable aren’t always linear. Take, for 

instance, a relationship of the form y = aebx. Taking the log of the independent variables 

simplifies the estimation problem dramatically. 



15 

 

 
 

REDUCING THE NUMBER OF VARIABLES 

Sometimes you have too many variables and need to reduce the number because they 

don’t add new information to the model. Having too many variables in your model makes the 

model difficult to handle, and certain techniques don’t perform well when you overload them 

with too many input variables. For instance, all the techniques based on a Euclidean distance 

perform well only up to 10 variables. 

 

TURNING VARIABLES INTO DUMMIES 

Variables can be turned into dummy variables (figure 2.13). Dummy variables can 

only take two values: true(1) or false(0). They’re used to indicate the absence of a categorical 

effect that may explain the observation. 



16 

 

 
2.5 Step 4: Exploratory data analysis 

Information becomes much easier to grasp when shown in a picture, therefore you mainly use 

graphical techniques to gain an understanding of your data and the interactions between 

variables. 

 
 



17 

 

 
The visualization techniques you use in this phase range from simple line graphs 

orhistograms, as shown in figure 2.15, to more complex diagrams such as Sankey andnetwork 

graphs. 

 

These plots can be combined to provide even more insight, as shown in figure 

2.16.Overlaying several plots is common practice. In figure 2.17 we combine simplegraphs 

into a Pareto diagram, or 80-20 diagram.Figure 2.18 shows another technique: brushing and 

linking. With brushing and linkingyou combine and link different graphs and tables (or 

views) so changes in onegraph are automatically transferred to the other graphs.  



18 

 

 
Pareto diagram: Combination of values and cumulative distribution 

 
 

 



19 

 

Link and Brush: 

 
Two other important graphs are the histogram shown in figure 2.19 and the boxplot 

shown in figure 2.20. 

In a histogram a variable is cut into discrete categories and the number of occurrencesin each 

category are summed up and shown in the graph. The boxplot show how many observations 

are present but does offer animpression of the distribution within categories. It can show the 

maximum, minimum,median, and other characterizing measures at the same time. 

 

Histogram: 

 

 
Box plot: It can show the maximum, minimum, median, and other characterizing 

measures at the same time. 



20 

 

 
2.6 Step 5: Build the models 

 
The techniques you’ll use now are borrowed from the field of machine learning, data mining, 

and/or statistics. most models consist of the following main steps: 

1 Selection of a modelling technique and variables to enter in the model 

2 Execution of the model 

3 Diagnosis and model comparison 

2.6.1 Model and variable selection 

You’ll need to select the variables you want to include in your model and a modelling 

technique. Your findings from the exploratory analysis should already give a fair idea of what 

variables will help you construct a good model.  

You’ll need to consider model performance and whether your project meets all the 

requirements to use your model, as well as other factors: 



21 

 

■ Must the model be moved to a production environment and, if so, would it be easy to 

implement? 

■ How difficult is the maintenance on the model: how long will it remain relevant if left 

untouched? 

■ Does the model need to be easy to explain? 

2.6.2 Model execution 

Once you’ve chosen a model you’ll need to implement it in code. Luckily, most programming 

languages, such as Python, already have libraries such as StatsModels or Scikit-learn. These 

packages use several of the most popular techniques. 

 

 
We created predictor values that are meant to predict how the target variables behave. For a 

linear regression, a “linear relation” between each x (predictor) and the y (target) variable is 

assumed, as shown in figure 2.22. 



22 

 

 
■ Model fit—For this the R-squared or adjusted R-squared is used. This measure is an 

indication of the amount of variation in the data that gets captured by the model. The 

difference between the adjusted R-squared and the R-squared is minimal here because the 

adjusted one is the normal one + a penalty for model complexity. 

A model gets complex when many variables (or features) are introduced. You don’t need a 

complex model if a simple model is available, so the adjusted R-squared punishes you for 

overcomplicating. At any rate, 0.893 is high, and it should be because we cheated. 

■ Predictor variables have a coefficient—For a linear model this is easy to interpret. 

Detecting influences is more important in scientific studies than perfectly fitting models (not 

to mention more realistic). 

■ Predictor significance—Coefficients are great, but sometimes not enough evidence exists 

to show that the influence is there. This is what the p-value is about. the p-value is lower than 

0.05, the variable is considered significant for most people. It means there’s a 5% chance the 

predictor doesn’t have any influence. 

Linear regression works if you want to predict a value, but what if you want to classify 

something? Then you go to classification models, the best known among them being k-

nearest neighbors. 



23 

 

 

 
Don’t let knn.score() fool you; it returns the model accuracy, but by “scoring a model” we 

often mean applying it on data to make a prediction. 

 

prediction = knn.predict(predictors) 

 

Now we can use the prediction and compare it to the real thing using a confusion 

matrix. 

 

metrics.confusion_matrix(target,prediction) 

 

We get a 3-by-3 matrix as shown in figure 2.25. 



24 

 

 
The confusion matrix shows we have correctly predicted 17+405+5 cases, so that’s good. 

2.6.3 Model diagnostics and model comparison 

You’ll be building multiple models from which you then choose the best one based 

onmultiple criteria. Working with a holdout sample helps you pick the best-performingmodel. 

A holdout sample is a part of the data you leave out of the model building so itcan be used to 

evaluate the model afterward. 

The principle here is simple: the model should work on unseen data.The model is then 

unleashed on the unseen data and error measures are calculated to evaluate it. Multiple error 

measures are available, and in figure 2.26 we show the general idea on comparing models. 

The error measure used in the example is the mean square error. 

 
 

Mean square error is a simple measure: check for every prediction how far it was from the 

truth, square this error, and add up the error of every prediction. 

 

To estimate the models, we use 800 randomly chosen observations out of 1,000 (or 80%), 

without showing the other 20% of data to the model. 



25 

 

 
Once the model is trained, we predict the values for the other 20% of the variables based on 

those for which we already know the true value, and calculate the model error with an error 

measure. Then we choose the model with the lowest error. In this example we chose model 1 

because it has the lowest total error. 

Many models make strong assumptions, such as independence of the inputs, and you have to 

verify that these assumptions are indeed met. This is called model diagnostics. 

 

2.7 Step 6: Presenting findings and building applications 

on top of them 

 
After you’ve successfully analyzed the data and built a well-performing model, you’re ready 

to present your findings to the world. Sometimes people get so excited about your work that 

you’ll need to repeat it over and over again because they value the predictions of your models 

or the insights that you produced. 



26 

 

For this reason, you need to automate your models. This doesn’t always mean that you have 

to redo all of your analysis all the time. Sometimes it’s sufficient that you implement only the 

model scoring; other times you might build an application that automatically updates reports, 

Excel spreadsheets, or PowerPoint presentations. The last stage of the data science process is 

where your soft skills will be most useful, and yes, they’re extremely important 

 

Data Mining 

Data mining should have been more appropriately named “knowledge mining from 

data,” which is unfortunately somewhat long. However, the shorter term, knowledge mining 

may not reflect the emphasis on mining from large amounts of data. Nevertheless, mining is a 

vivid term characterizing the process that finds a small set of precious nuggets from a great 

deal of raw material (Figure 1.3).  

In addition, many other terms have a similar meaning to data mining—for example, 

knowledge mining from data, knowledge extraction, data/pattern analysis, data 

archaeology, and data dredging 

 

 
Many people treat data mining as a synonym for another popularly used term, knowledge 

discovery from data, or KDD, while others view data mining as merely an essential step in 

the process of knowledge discovery.  

The knowledge discovery process is shown in Figure 1.4 as an iterative sequence of the 

following steps: 

1. Data cleaning (to remove noise and inconsistent data) 

2. Data integration (where multiple data sources may be combined) 



27 

 

 
3. Data selection (where data relevant to the analysis task are retrieved from the database) 

4. Data transformation (where data are transformed and consolidated into forms appropriate 

for mining by performing summary or aggregation operations) 

5. Data mining (an essential process where intelligent methods are applied to extract data 

patterns) 

6. Pattern evaluation (to identify the truly interesting patterns representing knowledge based 

on interestingness measures) 

7. Knowledge presentation (where visualization and knowledge representation techniques 

are used to present mined knowledge to users) 

Steps 1 through 4 are different forms of data preprocessing, where data are prepared for 

mining. The data mining step may interact with the user or a knowledge base. The interesting 

patterns are presented to the user and may be stored as new knowledge in the knowledge 

base. 

Data mining is the process of discovering interesting patterns and knowledge from large 

amounts of data. The data sources can include databases, data warehouses, theWeb, other 

information repositories, or data that are streamed into the system dynamically. 

 



28 

 

 

4.1.4 DataWarehousing: A Multitiered Architecture 

Data warehouses often adopt a three-tier architecture, as presented in Figure 4.1. 

 
1. The bottom tier is a warehouse database server that is almost always a relational 

database system. Back-end tools and utilities are used to feed data into the bottom tier 

from operational databases or other external sources (e.g., customer profile information 

provided by external consultants). These tools and utilities performdata extraction, 

cleaning, and transformation (e.g., to merge similar data from different sources into a 

unified format), as well as load and refresh functions to update the data warehouse (see 

Section 4.1.6). The data are extracted using application program interfaces known as 

gateways. A gateway is supported by the underlying DBMS and allows client programs 

to generate SQL code to be executed at a server. Examples of gateways include ODBC 

(Open Database Connection) and OLEDB (ObjectLinking and Embedding Database) by 

Microsoft and JDBC (Java Database Connection). 

This tier also contains a metadata repository, which stores information about the data 

warehouse and its contents. 

2. The middle tier is an OLAP (Online analytical processing) server that is typically 

implemented using either (1) a relationalOLAP(ROLAP) model (i.e., an extended relational 

DBMS that maps operations on multidimensional data to standard relational operations); or 



29 

 

(2) a multidimensional OLAP (MOLAP) model (i.e., a special-purpose server that directly 

implements multidimensional data and operations). 

3. The top tier is a front-end client layer, which contains query and reporting tools, analysis 

tools, and/or data mining tools (e.g., trend analysis, prediction, and so on). 

 

 Relational OLAP (ROLAP) servers: These are the intermediate servers that stand in 

between a relational back-end server and client front-end tools. They use a relational 

or extended-relational DBMS to store and manage warehouse data, and OLAP 

middleware to support missing pieces. ROLAP servers include optimization for each 

DBMS back end, implementation of aggregation navigation logic, and additional tools 

and services. ROLAP technology tends to have greater scalability than MOLAP 

technology. The DSS server of Microstrategy, for example, adopts the ROLAP 

approach. 

 Multidimensional OLAP (MOLAP) servers: These servers support 

multidimensional data views through array-based multidimensional storage engines. 

They map multidimensional views directly to data cube array structures. The 

advantage of using a data cube is that it allows fast indexing to precomputed 

summarized data. Notice that with multidimensional data stores, the storage 

utilization may be low if the dataset is sparse. Many MOLAP servers adopt a two-

level storage representation to handle dense  and sparse data sets: Denser subcubes are 

identified and stored as array structures, whereas sparse subcubes employ 

compression technology for efficient storage utilization. 

 Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP 

and MOLAP technology, benefiting from the greater scalability of ROLAP and the 

faster computation of MOLAP. For example, a HOLAP server may allow large 

volumes of detailed data to be stored in a relational database, while aggregations are 

kept in a separate MOLAP store. The Microsoft SQL Server 2000 supports a hybrid 

OLAP server. 

 Specialized SQL servers: To meet the growing demand of OLAP processing in 

relational databases, some database system vendors implement specialized SQL 

servers that provide advanced query language and query processing support for SQL 

queries over star and snowflake schemas in a read-only environment. 

 

Basic Statistical Descriptions of Data 

Basic statistical descriptions can be used to identify properties of the data and highlight which 

data values should be treated as noise or outliers. 

Measuring the Central Tendency: Mean, Median, and Mode 

we look at various ways to measure the central tendency of data. The mean of this set of 

values is 

 



30 

 

 
Example 2.7 Median. Let’s find the median of the data from Example 2.6. The data are 

already sorted in increasing order. There is an even number of observations (i.e., 12); 

therefore, the median is not unique. It can be any value within the two middlemost values of 

52 and 56 (that is, within the sixth and seventh values in the list). By convention, we assign 

the average of the two middlemost values as the median; that is, 

 
Thus, the median is $54,000. 

Suppose that we had only the first 11 values in the list. Given an odd number of values, the 

median is the middlemost value. This is the sixth value in this list, which has a value of 

$52,000. 

Example 2.8 Mode. The data from Example 2.6 are bimodal. The two modes are $52,000 

and 

$70,000. (They are repeated two times). 

 
Measuring the Dispersion of Data: Range, Quartiles, Variance, 

Standard Deviation, and Interquartile Range 

 Quantiles are points taken at regular intervals of a data distribution, dividing it into 

essentially equal size consecutive sets. 

 The 2-quantile is the data point dividing the lower and upper halves of the data 

distribution. It corresponds to the median. The 4-quantiles are the three data points 

that split the data distribution into four equal parts; each part represents one-fourth of 

the data distribution. They are more commonly referred to as quartiles. The 100-

quantiles are more commonly referred to as percentiles; they divide the data 

distribution into 100 equal-sized consecutive sets. The median, quartiles, and 

percentiles are the most widely used forms of quantiles. 



31 

 

 
The quartiles give an indication of a distribution’s center, spread, and shape. The first 

quartile, denoted by Q1, is the 25th percentile. It cuts off the lowest 25% of the data. The 

third quartile, denoted by Q3, is the 75th percentile—it cuts off the lowest 75% (or highest 

25%) of the data. The second quartile is the 50th percentile. As the median, it gives the 

center of the data distribution. 

The distance between the first and third quartiles is a simple measure of spread that gives the 

range covered by the middle half of the data. This distance is called the interquartile range 

(IQR) and is defined as 

IQR = Q3-Q1. 

 

Interquartile range. The quartiles are the three values that split the sorted data set into four 

equal parts. 30, 36, 47, 50, 52, 52, 56, 60, 63, 70, 70, 110 Thus, the quartiles for this data are 

the third, sixth, and ninth values, respectively, in the sorted list. Therefore, Q1 = $47,000 and 

Q3 is $63,000. Thus, the interquartile range is IQR = 63-47 = $16,000. 

 

For odd number of dataset with 9 values. 

30,36,47,50,52,52,56,60,63 

Median =52 

Lower half = 36+47/2  59.5 

Upper half = 56+60/2  86 

IQR= 26.5 

 

 

Five-Number Summary, Boxplots, and Outliers 

The five-number summary of a distribution consists of the median (Q2), the quartiles 

Q1 and Q3, and the smallest and largest individual observations, written in the order of 

Minimum, Q1, Median, Q3, Maximum. 



32 

 

 
Variance and Standard Deviation 

Variance and standard deviation are measures of data dispersion. They indicate how 

spread out a data distribution is. A low standard deviation means that the data observations 

tend to be very close to the mean, while a high standard deviation indicates that 

the data are spread out over a large range of values. 

The variance of N observations, x1,x2, : : : ,xN, for a numeric attribute X is 

 
where �̅� is the mean value of the observations, as defined in Eq. (2.1). The standard 

deviation, 𝜎, of the observations is the square root of the variance, 𝜎 2. 

 

 represents mean 

 standard deviation 

Variance 

 

 

 

 



33 

 

UNIT II 

Types of data 

THREE TYPES OF DATA 

Any statistical analysis is performed on data, a collection of actual observations or 

scores in a survey or an experiment. The precise form of a statistical analysis often depends 

on whether data are qualitative, ranked, or quantitative. 

 

Qualitative data consist of words (Yes or No), letters (Y or N), or numerical codes 

(0 or 1) that represent a class or category. Ranked data consist of numbers (1st, 2nd, . . . 

40th place) that represent relative standing within a group. Quantitative data consist of 

numbers (weights of 238, 170, . . . 185 lbs) that represent an amount or a count. 

 
TYPES OF VARIABLES 

A variable is a characteristic or property that can take on different values.  

Discrete and Continuous Variables 

Quantitative variables can be further distinguished in terms of whether they are 

discrete or continuous. A discrete variable consists of isolated numbers separated by gaps. 

Examples include most counts, such as the number of children in a family (1, 2,3, etc., but 

never 1 1/2. 

A continuous variable consists of numbers whose values, at least in theory, have no 

restrictions. Examples include amounts, such as weights of male statistics students; durations, 

such as the reaction times of grade school children to a fire alarm; and standardized test 

scores, such as those on the Scholastic Aptitude Test (SAT). 

 

Independent and Dependent Variables 

For example, a psychologist might wish to investigate whether couples who undergo 

special training in “active listening” tend to have fewer communication breakdowns than do 

couples who undergo no special training. To study this, the psychologist may expose couples 

to two different conditions by randomly assigning them either to a treatment group that 

receives special training in active listening or to a control group that receives no special 



34 

 

training. Such studies are referred to as experiments. An experiment is a study in which the 

investigator decides who receives the special treatment. 

 
Independent Variable (The treatment manipulated by the investigator in an experiment.) 

Since training is assumed to influence communication, it is an independent variable. In an 

experiment, an independent variable is the treatment manipulated by the investigator.  

Once the data have been collected, any difference between the groups can be 

interpreted as being caused by the independent variable. 

If, for instance, a difference appears in favor of the active-listening group, the 

psychologist can conclude that training in active listening causes fewer communication 

breakdowns between couples. Having observed this relationship, the psychologist can expect 

that, if new couples were trained in active listening, fewer breakdowns in communication 

would occur. 

Dependent Variable (A variable that is believed to have been influenced by the independent 

variable.) 

To test whether training influences communication, the psychologist counts the 

number of communication breakdowns between each couple, as revealed by inappropriate 

replies, aggressive comments, verbal interruptions, etc., while discussing a conflict-provoking 

topic, such as whether it is acceptable to be intimate with a third person. 

In an experimental setting, the dependent variable is measured, counted, or recorded 

by the investigator. 

Unlike the independent variable, the dependent variable isn’t manipulated by the investigator. 

Instead, it represents an outcome: the data produced by the experiment 

Confounding Variable 
Couples willing to devote extra effort to special training might already possess a 

deeper commitment that co-varies with more active-listening skills. An uncontrolled variable 

that compromises the interpretation of a study is known as a confounding variable. You can 

avoid confounding variables, as in the present case, by assigning subjects randomly to the 

various groups in the experiment and also by standardizing all experimental conditions, other 

than the independent variable, for subjects in both groups. 

 

Describing Data with Tables and Graphs 

2.1 FREQUENCY DISTRIBUTIONS FOR QUANTITATIVE DATA 

A frequency distribution is a collection of observations produced by sorting 

observations into classes and showing their frequency (f ) of occurrence in each class. 

 



35 

 

Frequency distribution for ungrouped data 

 

 
Not Always Appropriate 

Frequency distributions for ungrouped data are much more informative when the number of 

possible values is less than about 20. Under these circumstances, they are a straightforward 

method for organizing data. Otherwise, if there are 20 or more possible values, consider using 

a frequency distribution for grouped data. 

Grouped Data 

Table 2.2 shows another way to organize the weights in Table 1.1 according to their 

frequency of occurrence. When observations are sorted into classes of more than one value, 

as in Table 2.2, the result is referred to as a frequency distribution for grouped data.  

 

Data are grouped into class intervals with 10 possible values each. The bottom class 

includes the smallest observation (133), and the top class includes the largest observation 

(245). The distance between bottom and top is occupied by an orderly series of classes. The 

frequency ( f ) column shows the frequency of observations in each class and, at the bottom, 

the total number of observations in all classes. 



36 

 

 
 

2.2 GUIDELINES 

The “Guidelines for Frequency Distributions” box lists seven rules for producing a well-

constructed frequency distribution. The first three rules are essential and should not be 

violated. The last four rules are optional and can be modified or ignored as circumstances 

warrant. 



37 

 

 



38 

 

 
2.4 RELATIVE FREQUENCY DISTRIBUTIONS 

Relative frequency distributions show the frequency of each class as a part or fraction of the 

total frequency for the entire distribution. 

Constructing Relative Frequency Distributions 

To convert a frequency distribution into a relative frequency distribution, divide the 

frequency for each class by the total frequency for the entire distribution. 



39 

 

 
* The sum does not equal 1.00 because of rounding-off errors. 

For instance, to obtain the proportion of .06 for the class 130–139, divide the frequency of 3 

for that class by the total frequency of 53. 

Percentages or Proportions? 

To convert the relative frequencies in Table 2.5 from proportions to percentages, multiply 

each proportion by 100; that is, move the decimal point two places to the right. For example, 

multiply .06 (the proportion for the class 130–139) by 100 to obtain 6 percent. 

 

 

2.5 CUMULATIVE FREQUENCY DISTRIBUTIONS 

Cumulative frequency distributions show the total number of observations in each class and 

in all lower-ranked classes.  



40 

 

 
 

For class 130-139 the cumulative frequency is 3 since, there are no lower classes. 

For class 140-149 the cumulaive frequency is 1+3 = 4 

For class 150-159 the cumulative frequency is 1+3+17= 21 

 

The cumulative percent for class 130-139 is given by  (cumulative frequency / Total no.of 

freq)*100. 

Example (3/53)*100 = 5.66 = 6 

 

Percentile Ranks 

When used to describe the relative position of any score within its parent distribution, 

cumulative percentages are referred to as percentile ranks. The percentile rank of a score 

indicates the percentage of scores in the entire distribution with similar or smaller values 

than that score. 

 

Approximate Percentile Ranks (from Grouped Data) 

 

The assignment of exact percentile ranks requires that cumulative percentages be 

obtained from frequency distributions for ungrouped data. If we have access only to a 

frequency distribution for grouped data, as in Table 2.6, cumulative percentages can be used 

to assign approximate percentile ranks.In Table 2.6, for example, any weight in the class 170–

179 could be assigned an approximate percentile rank of 75, since 75 is the cumulative 

percent for this class. 

 

2.6 FREQUENCY DISTRIBUTIONS FOR QUALITATIVE (NOMINAL) DATA 

Qualitative data consist of words (Yes or No), letters (Y or N), or numerical codes (0 or 1) 

that represent a class or category. 

 



41 

 

 
Relative and Cumulative Distributions for Qualitative Data 

Frequency distributions for qualitative variables can always be converted into relative 

frequency distributions, as illustrated in Table 2.8. Furthermore, if measurement is ordinal 

because observations can be ordered from least to most, cumulative frequencies (and 

cumulative percentages) can be used. 

 
PROPORTION – RELATIVE FREQUENCY 

Example: 29169/78827 = 0.370 

 

To find cumulative percent we have to find cumulative frequency: 

 F Cumulative Frequency Cumulative percent 

 311 78827 100 

 13156 78516 99.6 

 16108 65360 82.9 

 29169 49252 62.5 

 20083 20083 25.5 

Total 78827   

Cumulative percent = 49252/78827 =0.624*100=62.48 

 



42 

 

2.8 GRAPHS FOR QUANTITATIVE DATA 

Histograms 

 
The weight distribution described in Table 2.2 appears as a histogram in Figure 2.1. 

A casual glance at this histogram confirms previous conclusions: a dense concentration of 

weights among the 150s, 160s, and 170s, with a spread in the direction of the heavier 

weights. Let’s pinpoint some of the more important features of histograms. 

 

1. Equal units along the horizontal axis (the X axis, or abscissa) reflect the various class 

intervals of the frequency distribution. 

2. Equal units along the vertical axis (the Y axis, or ordinate) reflect increases in 

frequency. 

3. The intersection of the two axes defines the origin at which both numerical scales 

equal 0. 

4. Numerical scales always increase from left to right along the horizontal axis and from 

bottom to top along the vertical axis. It is considered good practice to use wiggly lines 

to highlight breaks in scale, such as those along the horizontal axis in Figure 2.1, 

between the origin of 0 and the smallest class of 130–139. 

5. The body of the histogram consists of a series of bars whose heights reflect the 

frequencies for the various classes 

Frequency Polygon 

An important variation on a histogram is the frequency polygon, or line graph. Frequency 

polygons may be constructed directly from frequency distributions. 



43 

 

 
Stem and Leaf Displays 

 Still another technique for summarizing quantitative data is a stem and leaf display. 

Constructing a Display 

The leftmost panel of Table 2.9 re-creates the weights of the 53 male statistics students listed 

in Table 1.1. 

 
Draw a vertical line to separate the stems, which represent multiples of 10, from the space to 

be occupied by the leaves, which represent multiples of 1. 



44 

 

 
Selection of Stems 

 Stem values are not limited to units of 10. Depending on the data value of 10, such as 

1, 100, 1000, or even .1, .01, .001, and so on can be selected.  

For instance, an annual income of $23,784 could be displayed as a stem of 23 (thousands) 

and a leaf of 784. (Leaves consisting of two or more digits, such as 784, are separated by 

commas.) 

 

2.9 TYPICAL SHAPES 

Whether expressed as a histogram, a frequency polygon, or a stem and leaf display, an 

important characteristic of a frequency distribution is its shape. Figure 2.3 shows some of the 

more typical shapes for smoothed frequency polygons 

 



45 

 

 

Normal 

Any distribution that approximates the normal shape. The familiar bell-shaped 

silhouette of the normal curve can be superimposed on many frequency distributions. 

Bimodal 

Any distribution that approximates the bimodal shape in panel B, might, as suggested 

previously, reflect the coexistence of two different types of observations in the same 

distribution. For instance, the distribution of the ages of residents in a neighborhood 

consisting largely of either new parents or their infants has a bimodal shape. 

Positively Skewed 

The two remaining shapes in Figure 2.3 are lopsided. A lopsided distribution caused by a few 

extreme observations in the positive direction 

Negatively Skewed 

A lopsided distribution caused by a few extreme observations in the negative direction (to the 

left of the majority of observations) 

2.10 A GRAPH FOR QUALITATIVE (NOMINAL) DATA 

 “Do you have a Facebook profile?” appears as a bar graph in Figure 2.4. As with 

histograms, equal segments along the horizontal axis are allocated to the different words or 

classes that appear in the frequency distribution for qualitative data. 

 
2.11 MISLEADING GRAPHS 

 



46 

 

 

 
 

  



47 

 

Describing Data with Averages 

3.1 MODE 

The mode reflects the value of the most frequently occurring score. 

 

 
Four years is the modal term, since the greatest number of presidents, 7, served this term. 

Note that the mode equals 4 years 

More Than One Mode 

Distributions can have more than one mode (or no mode at all). 

Distributions with two obvious peaks, even though they are not exactly the same height, are 

referred to as bimodal. Distributions with more than two peaks are referred to as 

multimodal.The presence of more than one mode might reflect important differences among 

subsets of data. 

  



48 

 

3.2 MEDIAN 

The median reflects the middle value when observations are ordered from least to most. 

 
 

3.3 MEAN 

The mean is found by adding all scores and then dividing by the number of 

scores. 

 
 

Sample or Population? 

Statisticians distinguish between two types of means—the population mean and the sample 

mean—depending on whether the data are viewed as a population (a complete set of scores) 

or as a sample (a subset of scores). 

Formula for Sample Mean 

designates the sample mean, and the formula becomes 

The balance point for a sample, found by dividing the sum for the values of all scores in the 

sample by the number of scores in the sample. 

 
 

 

 



49 

 

Formula for Population Mean 

The formula for the population mean differs from that for the sample mean only because of a 

change in some symbols. In statistics, Greek symbols usually describe population 

characteristics, such as the population mean, while English letters usually describe sample 

characteristics, such as the sample mean. 

 
Mean as Balance Point 

The mean serves as the balance point for its frequency distribution. 

 

3.4 WHICH AVERAGE? 

If Distribution Is Not Skewed 

When a distribution of scores is not too skewed, the values of the mode, median, and mean 

are similar, and any of them can be used to describe the central tendency of the distribution. 

If Distribution Is Skewed 

When extreme scores cause a distribution to be skewed, as for the infant death rates for 

selected countries listed in Table 3.4, the values of the three averages can differ appreciably. 

 
The modal infant death rate of 4 describes the most typical rate (since it occurs most 

frequently, five times, in Table 3.4). 



50 

 

The median infant death rate of 7 describes the middle-ranked rate (since the United States, 

with a death rate of 7, occupies the middle-ranked, or 10th, position among the 19 ranked 

countries). 

The mean infant death rate of 30.00 describes the balance point for all rates (since the sum of 

all rates, 570, divided by the number of countries, 19, equals 30.00). 

Unlike the mode and median, the mean is very sensitive to extreme scores, or outliers. 

Interpreting Differences between Mean and Median 

 Ideally, when a distribution is skewed, report both the mean and the median. 

 Appreciable differences between the values of the mean and median signal the 

presence of a skewed distribution. 

 If the mean exceeds the median the underlying distribution is positively skewed. 

 If the median exceeds the mean, the underlying distribution is negatively skewed. 

 
3.5 AVERAGES FOR QUALITATIVE AND RANKED DATA 

 

Mode Always Appropriate for Qualitative Data 

The mode always can be used with qualitative data. 

 

Median Sometimes Appropriate 

The median can be used whenever it is possible to order qualitative data from least to most 

because the level of measurement is ordinal. 



51 

 

Averages for Ranked Data 

When the data consist of a series of ranks, with its ordinal level of measurement, the 

median rank always can be obtained. 

 

Describing Variability 

Variability is the measures of amount by which scores are dispersed or scattered in a 

distribution. 

In Figure 4.1, each of the three frequency distributions consists of seven scores with 

the same mean (10) but with different variabilities. rank the three distributions from least to 

most variable. Your intuition was correct if you concluded that distribution A has the least 

variability, distribution B has intermediate variability, and distribution C has the most 

variability. For distribution A with the least (zero) variability, all seven scores have the same 

value (10). For distribution B with intermediate variability, the values of scores vary slightly 

(one 9 and one 11), and for distribution C with most variability, they vary even more (one 7, 

two 9s, two 11s, and one 13). 

 

FIGURE 4.1 

Three distributions with the same mean (10) but different amounts of variability. Numbers 

in the boxes indicate distances from the mean. 

 

4.2 RANGE 

The range is the difference between the largest and smallest scores. 

 

In Figure 4.1, distribution A, the least variable, has the smallest range of 0 (from 10 to 

10); distribution B, the moderately variable, has an intermediate range of 2 (from 11 to 9); 

and distribution C, the most variable, has the largest range of 6 (from 13 to 7). 

 

Shortcomings of Range 

1. The range has several shortcomings. First, since its value depends on only two 

scores—the largest and the smallest—it fails to use the information provided by the 

remaining scores. 

2. The value of the range tends to increase with increases in the total number of scores. 

 

4.3 VARIANCE 

The mean of all squared deviation scores. 

the variance also qualifies as a type of mean, that is, as the balance point for some 

distribution. In the case of the variance, each original score is re-expressed as a distance or 

deviation from the mean by subtracting the mean. 



52 

 

Reconstructing the Variance 

 
FIGURE 4.1 

In distribution C, one score coincides with the mean of 10, four scores (two 9s and two 11s) 

deviate 1 unit from the mean, and two scores (one 7 and one 13) deviate 3 units from the 

mean, yielding a set of seven deviation scores: one 0, two –1s, two 1s, one –3, and one 3. 

(Deviation scores above the mean are assigned positive signs; those below the mean are 

assigned negative signs.) 

Mean of the Squared Deviations 

Multiplying each deviation by itself—generates a set of squared deviation scores, all 

of which are positive. add the consistently positive values of all squared deviation scores and 

then dividing by the total number of scores to produce the mean of all squared deviation 

scores, also known as the variance. 

Example of Variance in Finance 

Here’s a hypothetical example to demonstrate how variance works. Let’s say returns 

for stock in Company ABC are 10% in Year 1, 20% in Year 2, and −15% in Year 3. The 

average of these three returns is 5%. The differences between each return and the average 

are 5%, 15%, and −20% for each consecutive year. 

Squaring these deviations yields 0.25%, 2.25%, and 4.00%, respectively. If we add 

these squared deviations, we get a total of 6.5%. When you divide the sum of 6.5% by one 

less the number of returns in the data set, as this is a sample (2 = 3-1), it gives us a variance 

of 3.25% (0.0325). Taking the square root of the variance yields a standard deviation of 18% 

(√0.0325 = 0.180) for the returns. 

4.4 STANDARD DEVIATION 

 

The square root of the variance. This produces a new measure, known as the standard 

deviation, that describes variability in the original units of measurement the standard 

deviation, the square root of the mean of all squared deviations from the mean, that is, 

 
Majority of Scores within One Standard Deviation 

For instance, among the seven deviations in distribution C, a majority of five scores 

deviate less than one standard deviation (1.77) on either side of the mean. Essentially the 

same pattern describes a wide variety of frequency distributions including the two shown in 

Figure 4.3, where the lowercase letter ‘s’ represents the standard deviation. As suggested in 

the top panel of Figure 4.3, 

  



53 

 

if the distribution of IQ scores for a class of fourth graders has a mean (X) of 105and 

a standard deviation (s) of 15, a majority of their IQ scores should be within one standard 

deviation on either side of the mean, that is, between 90 and 120. 

 

 
FIGURE 4.3 

Some generalizations that apply to most frequency distributions 

 

Standard Deviation: A Measure of Distance 

There’s an important difference between the standard deviation and its indispensable 

co-measure, the mean. The mean is a measure of position, but the standard deviation is a 

measure of distance (on either side of the mean of the distribution). 

 

4.5 DETAILS: STANDARD DEVIATION 

Sum of Squares (SS) 

Calculating the standard deviation requires that we obtain first a value for the variance. 

However, calculating the variance requires, in turn, that we obtain the sum of the squared 

deviation scores. The sum of squared deviation scores, or more simply the sum of squares, 

symbolized by SS, 

There are two formulas for the sum of squares 

 

 

Sum of Squares Formulas for Population 

The definition formula provides the most accessible version of the population sum of squares: 

 
SS represents the sum of squares, Σ directs us to sum over the expression to its right, and (X − 

μ) 2 denotes each of the squared deviation scores. 

1. Subtract the population mean, μ, from each original score, X, to obtain a deviation 

score, X − μ. 

2. Square each deviation score, (X − μ)2, to eliminate negative signs. 

3. Sum all squared deviation scores, Σ (X − μ)2. 

 



54 

 

 

where  , the sum of the squared X scores, is obtained by first squaring each X score and 

then summing all squared X scores; , the square of sum of all X scores, is obtained by 

first adding all X scores and then squaring the sum of all X scores; and N is the population 

size. 

 
 

 

 

  



55 

 

Sum of Squares Formulas for Sample 

 

 

 

 
 

Standard Deviation for Population σ 

 

 



56 

 

 

 
Standard Deviation for Sample (s ) 

 

 

 
 

where s2 and s represent the sample variance and sample standard deviation, SS is the 

sample sum of squares 

 



57 

 

 
 

4.6 DEGREES OF FREEDOM (df) 

Degrees of freedom (df) refers to the number of values that are free to vary, given one or 

more mathematical restrictions, in a sample being used to estimate a population 

characteristic. 

 

when n deviations about the sample mean are used to estimate variability in the population, 

only n − 1 are free to vary. As a result, there are only n − 1 degrees of freedom, that is, 

df= n − 1. One dfis lost because of the zero-sum restriction. 

 

 
 

 
where s2 and s represent the sample variance and standard deviation, SS is the sum of 

squares, dfis the degrees of freedom and equals n − 1. 



58 

 

4.7 INTERQUARTILE RANGE (IQR) 

 

 
 

 



59 

 

5. Normal Distributions and Standard (z) Scores 

 

5.1 THE NORMAL CURVE 

FBI agents are to be selected only from among applicants who are no taller than 

exactly 66 inches, what proportion of all of the original applicants will be eligible? This 

question can’t be answered without additional information. One source of additional 

information is the relative frequency distribution of heights for the 3091 men shown in 

Figure 5.1. 

 
FIGURE 5.1 

Relative frequency distribution for heights of 3091 men. Source: National Center for Health 

Statistics, 1960–62, Series 11, No.14. Mean updated by authors. 

.10 of these men, that is, one-tenth of 3091, (3091/10) or about 309 men, are 70 

inches tall. .10 of these men, that is, one-tenth of 3091, or about 309 men, are 70 inches tall. 

Only half of the bar at 66 inches is shaded to adjust for the fact that any height between 65.5 

and 66.5 inches is reported as 66 inches, whereas eligible applicants must be shorter than 

exactly 66 inches, that is, 66.0 inches. 

 

Properties of the Normal Curve 

Let’s note several important properties of the normal curve: 

■Obtained from a mathematical equation, the normal curve is a theoretical curve defined for 

a continuous variable, and noted for its symmetrical bell-shaped form, as revealed in Figure 

5.2. 

■ Because the normal curve is symmetrical, its lower half is the mirror image of its upper 

half. 

■ Being bell shaped, the normal curve peaks above a point midway along the horizontal 

spread and then tapers off gradually in either direction from the peak (without actually 

touching the horizontal axis, since, in theory, the tails of a normal curve extend infinitely far). 

■ The values of the mean, median (or 50th percentile), and mode, located at a point midway 

along the horizontal spread, are the same for the normal curve. 

 



60 

 

 
FIGURE 5.2 

Normal curve superimposed on the distribution of heights. 

Different Normal Curves 

For example, changing the mean height from 69 to 79 inches produces a new normal 

curve that, as shown in panel A of Figure 5.3, is displaced 10 inches to the right of the 

original curve. Dramatically new normal curves are produced by changing the value of the 

standard deviation. As shown in panel B of Figure 5.3, changing the standard deviation from 

3 to 1.5 inches produces a more peaked normal curve with smaller variability, whereas 

changing the standard deviation from 3 to 6 inches produces a shallower normal curve with 

greater variability. 

 
Because of their common mathematical origin, every normal curve can be interpreted 

in exactly the same way once any distance from the mean is expressed in standard deviation 

units. 

 

5.2 z SCORES 

A z score is a unit-free, standardized score that, regardless of the original units of 

measurement, indicates how many standard deviations a score is above or below the 

mean of its distribution. 

 

To obtain a z score, express any original score, whether measured in inches, 

milliseconds, dollars, IQ points, etc., as a deviation from its mean (by subtracting its mean) 

and then split this deviation into standard deviation units (by dividing by its standard 

deviation), that is, 

 



61 

 

 
where X is the original score and μ and σ are the mean and the standard deviation, 

respectively, 

 

A z score consists of two parts: 

1. a positive or negative sign indicating whether it’s above or below the mean; and 

2. a number indicating the size of its deviation from the mean in standard deviation 

units. 

 

Converting to z Scores 

To answer the question about eligible FBI applicants, replace X with 66 (the maximum 

permissible height), μ with 69 (the mean height), and σ with 3 (the standard deviation of 

heights) and solve for z as follows: 

 
 

This informs us that the cutoff height is exactly one standard deviation below the 

mean. Knowing the value of z, we can use the table for the standard normal curve to find the 

proportion of eligible FBI applicants. First, however, we’ll make a few comments about the 

standard normal curve. 

5.3 STANDARD NORMAL CURVE 

If the original distribution approximates a normal curve, then the shift to standard or z scores 

will always produce a new distribution that approximates the standard normal curve. The 

standard normal curve always has a mean of 0 and a standard deviation of 1. 

 However, to verify (rather than prove) that the mean of a standard normal distribution equals 

0, replace X in the z score formula with μ, the mean of any (nonstandard) normal distribution, 

and then solve for z: 

 

 
to verify that the standard deviation of the standard normal distribution equals 1, replace X in 

the z score formula with μ + 1σ, the value corresponding to one standard deviation above the 

mean for any (nonstandard) normal distribution, and then solve for z: 

 
 

Although there is an infinite number of different normal curves, each with its own mean 

and standard deviation, there is only one standard normal curve, with a mean of 0 and a 

standard deviation of 1. 



62 

 

 
Page 458 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z score  



63 

 

5.4 SOLVING NORMAL CURVE PROBLEMS 

using rough graphs of normal curves as an aid to visualizing the solution 

 
Key Facts to Remember 

 for any z score, the corresponding proportions in columns B and C (or columns B′ and 

C′) always sum to .5000. Similarly, the total area under the normal curve always equals 

1.0000, the sum of the proportions in the lower and upper halves, that is, .5000 + .5000. 

Finally, although a z score can be either positive or negative, the proportions of area under the 

curve are always positive or zero but never negative (because an area cannot be negative). 

Figure 5.5 summarizes how to interpret the normal curve table in this book. 

5.5 FINDING PROPORTIONS 

1. Sketch a normal curve and shade in the target area 

2. Plan your solution according to the normal table. 

Decide precisely how you will find the value of the target area. In the present case, the 

answer will be obtained from column C′ of the standard normal table, since the target area 

coincides with the type of area identified with column C′, that is, the area in the lower tail 

beyond a negative z. 

3. Convert X to z. 

 

 
4. Find the target area. Refer to the standard normal table, using the bottom legend, as 

the z score is negative. The arrows in Table 5.1 show how to read the table. Look up 

column A’ to 1.00 (representing a z score of –1.00), and note the corresponding 

proportion of .1587 in column C’: This is the answer, as suggested in the right part of 



64 

 

Figure 5.6. It can be concluded that only .1587 (or .16) of all of the FBI applicants 

will be shorter than 66 inches. 

Example: Finding Proportions between Two Scores 

 

 

 
Look up column A′ to a negative z score of –1.00 (remember, you must imagine the negative 

sign), and note the corresponding proportion of .1587 in column C′. Likewise, look up 



65 

 

column A′ to a z score of –1.67, and note the corresponding proportion of .0475 in column C′. 

Subtract 

 

  



66 

 

 

UNIT III 

 

6.2 SCATTERPLOTS 

A scatterplot is a graph containing a cluster of dots that represents all pairs of scores. 

 
 

Positive, Negative, or Little or No Relationship? 

 

 

 
A dot cluster that has a slope from the lower left to the upper right, as in panel A of Figure 

6.2, reflectsa positive relationship. Small values of one variable are paired with small values 

of the other variable, and large values are paired with large values. 

 



67 

 

Strong or Weak Relationship? 

 The more closely the dot cluster approximates a straight line, the stronger (the more 

regular) the relationship will be. 

 

 
 

Perfect Relationship 

A dot cluster that equals (rather than merely approximates) a straight line reflects a perfect 

relationship between two variables. In practice, perfect relationships are most unlikely. 

 

 

Curvilinear Relationship 

Sometimes adot cluster approximates a bent or curved line, as in Figure 6.4, and therefore 

reflectsa curvilinear relationship. Descriptions of these relationships are more complex 

thanthose of linear relationships. 

 
 

 

 



68 

 

6.3 A CORRELATION COEFFICIENT FOR QUANTITATIVE DATA : r 

 

A correlation coefficient is a number between –1 and 1 that describes the 

relationshipbetween pairs of variables. 

 

Key Properties of r 

 

1. The sign of r indicates the type of linear relationship, whether positive or negative. 

2. The numerical value of r, without regard to sign, indicates the strength of the 

linear relationship. 

 

Sign of r 

A number with a plus sign (or no sign) indicates a positive relationship, and a number 

with a minus sign indicates a negative relationship. For example, an r with a plus sign 

describes the positive relationship between height and weight shown in panel A of Figure 6.2, 

and an r with a minus sign describes the negative relationship between heavy smoking and 

life expectancy shown in panel B. 

 
 

Numerical Value of r 

 The more closely a value of r approaches either –1.00 or +1.00, the stronger (more 

regular) the relationship. Conversely, the more closely the value of r approaches 0, the 

weaker (less regular) the relationship. Figure 6.3, notice that the values of r shift from .75 to 

.27 as the analysis for pairs of IQ scores shifts from a relatively strong relationship for 

identical twins to a relatively weak relationship for foster parents and foster children. 

 

 



69 

 

 

Interpretation of r 

Located along a scale from –1.00 to +1.00, the value of r supplies information about 

the direction of a linear relationship—whether positive or negative—and, generally, 

information about the relative strength of a linear relationship—whether relatively weak (and 

a poor describer of the data) because r is in the vicinity of 0, or relatively strong (and a good 

describer of the data) because r deviates from 0 in the direction of either +1.00 or –1.00. 

 

r Is Independent of Units of Measurement 

The value of r is independent of the original units of measurement. 

 

Range Restrictions 

 

The value of the correlation coefficient declines whenever the range of possible X or Y scores 

is restricted.  

 

For example, Figure 6.5 shows a dot cluster with an obvious slope, represented by an 

r of .70 for the positive relationship between height and weight for all college students. If, 

however, the range of heights along Y is restricted to students who stand over 6 feet 2 inches 

(or 74 inches) tall, the abbreviated dot cluster loses its obvious slope because of the more 

homogeneous weightsamong tall students. Therefore, as depicted in Figure 6.5, the value of r 

drops to .10. 

 

 
 

Verbal Descriptions 

 

An r of .70 for the height and weight of college students could be translated into “Taller 

students tend to weigh more” 

 

 

 

 



70 

 

6.4 DETAILS: COMPUTATION FORMULA FOR r 

 

Calculate a value for r by using the following computation formula: 

 

 

 
 

where the two sum of squares terms in the denominator are defined as 

 
 

and the sum of the products term in the numerator  

 
  



71 

 

 

 
 

 

 

 

 

 

 

 

 



72 

 

7.2 A REGRESSION LINE 

 

  
FIGURE 7.2 

Prediction of 15.20 for Emma (using the regression line). 

 

Predictive Errors 

Figure 7.3 illustrates the predictive errors that would have occurred if the regression 

line had been used to predict the number of cards received by the five friends. 

 

 

 
FIGURE 7.3 

Predictive errors. 



73 

 

 

 

7.3 LEAST SQUARES REGRESSION LINE 

 

 The placement of the regression line minimizes not the total predictiveerror but 

the total squared predictive error. that is, the total for all squared predictive errors. When 

located in this fashion, the regression line is often referred to as the leastsquares 

regression line. 

 

Least Squares Regression Equation 

 
 

Y´ represents the predicted value 

X represents the known value 

and b and a represent numbers calculated from the original correlation analysis, 

 

Finding Values of b and a 

 
 

where r represents the correlation between X and Y 

 

SSyrepresents the sum of squares for all Y scores 

 

SSxrepresents the sum of squares for all X scores 

 
 

Where  refers to mean values of X and Y scores. 



74 

 

 
=.80*13+6.40 

=16.8 

 
 

7.4 STANDARD ERROR OF ESTIMATE,s y | x  (s sub y given x.”)  [Error caused during 

prediction] 

 

 
 

SSy|x, represents the sum of the squares for predictive errors, Y − Y′ 

 



75 

 

 
where SSy is the sum of the squares for Y scores (cards received by the five friends), that is, 

 

 

 
7.5 ASSUMPTIONS 

Linearity 

Use of the regression equation requires that the underlying relationship be linear. You need 

to worry about violating this assumption only when the scatterplot for the original correlation 

analysis reveals an obviously bent or curvilinear dot cluster, such as illustrated in Figure 6.4. 

In the unlikely event that a dot cluster describes a pronounced curvilinear trend consult 

advanced statistics technique. 

Homoscedasticity 

Use of the standard error of estimate, sy|x, assumes that except for chance, the dots in the 

original scatterplot will be dispersed equally about all segments of the regression line. You 

need to worry about violating this assumption homoscedasticity only when the scatterplot 

reveals a dramatically different 

type of dot cluster such as that shown in Figure 7.4 



76 

 

 
Figure 7.4 

 

7.6 INTERPRETATION OF r2 
Squared correlation coefficient, r2 A measure of predictive accuracy that supplements 

thestandard error of estimate, sy|x. even though our ultimate goal is to show therelationship 

between r2 and predictive accuracy, we will initially concentrate on two kinds of predictive 

errors—those due to the repetitive prediction of the mean and those due to the regression 

equation. 

 

Repetitive Prediction of the Mean 

 we know the Y scores (cards received), but not the corresponding X scores (cards 

sent).  

 Lacking information about the relationship between X and Y scores, we could not 

construct a regression equation 

 We could, however, mount a primitive predictive effort by always predicting the 

mean, Y, for each of the five friends’ Y scores. 

 using the repetitive prediction of Y for each of the Y scores of all five friends will 

supply us with a frame of reference against which to evaluate our customary 

predictive effort based on the correlation between cards sent (X) and cards received 

(Y). 

  



77 

 

Predictive Errors 

 
Panel A of Figure 7.5 shows the predictive errors for all five friends when the mean for all 

five friends, Y, of 12 (shown as the mean line) is always used to predict each of their five Y 

scores. Panel B shows the corresponding predictive errors for all five friends when a series of 

different Y′ values, obtained from the least squares equation (shown as the least squares line), 

is used to predict each of their five Y scores. 

 

Positive and negative errors indicate that Y scores are either above or below 

theircorresponding predicted scores. 

Overall, as expected, errors are smaller when customized predictions of Y′ from the least 

squares equation can be used than when only the repetitive prediction of Y can be used. 

  



78 

 

Error Variability (Sum of Squares) 

To more precisely evaluate the accuracy of our two predictive efforts, we need some measure. 

sum of squares is used to measure collective errors produced by these efforts. sum of squares 

calculate by first squaring each error (to eliminate negative signs), then summing all squared 

errors. 

 

The error variability for the repetitive prediction of the mean can be designated as SSy. 

since each Y score is expressed as a squared deviation from  and then summed. 

 

 
Using the errors for the five friends shown in Panel A of Figure 7.5, this becomes 

 
The error variability for the customized predictions from the least squares equation 

can be designated as SSy|x 

 
Using the errors for the five friends shown in Panel B of Figure 7.5, we obtain: 

 

 
 

Proportion of Predicted Variability 

 

SSymeasures the total variability 

SSy|xmeasures the residual variability 

The error variability of 28.8 for the least squares predictions is much smaller than the error 

variability of 80 for the repetitive prediction of Y, confirming the greater accuracy of the least 

squares predictions 

apparent in Figure 7.5 

 

To obtain an SS measure of the actual gain in accuracy due to the least squarespredictions, 

subtract the residual variability from the total variability, that is, subtract 

SSy|xfrom SSy, to obtain 

 

 
 

To express this difference, 51.2, as a gain in accuracy relative to the original errorvariability 

for the repetitive prediction of Y, 

 

 
 

This result, .64 or 64 percent, represents the proportion or percent gain in predictive accuracy. 

 



79 

 

Square the value of 0.80 in previous problem yields .64.  

 

the square of the correlation coefficient, r2, always indicates the proportion oftotal 

variability in one variable that is predictable from its relationship with theother 

variable. 

 

 
 

SSy is variability explained by or predictable from the regression equation 

 
 

r2 Does Not Apply to Individual Scores 

 

Small Values of r2 
a value of r2 in the vicinity of .01, .09, or .25 reflects a weak, moderate, or strongrelationship, 

respectively 

 

r2provides us with a straightforward measure of the worth of our least squares predictive 

effort 

 

7.7 MULTIPLE REGRESSION EQUATIONS 

 

General form : y = mx1 + mx2+ mx3+ b 

 

Y′ =.410(X1)+ .005(X2 )+ .001(X3 )+ 1.03 

 

Y′ represents predicted college GPA 

X1, X2, and X3 refer to high school GPA, IQ score, and SAT score, 

these multiple regression equations supply more accurate predictions for Y′ (often referred 

to as the criterion variable) 



80 

 

7.8 REGRESSION TOWARD THE MEAN 

Regression toward the mean refers to a tendency for scores, particularly extreme 

scores, to shrink toward the mean. 

 

Table 7.4 lists the top 10 hitters in the major leagues during 2014 and shows how they fared 

during 2015. Notice that 7 of the top 10 batting averages regressed downward, toward 260s, 

the approximate mean for all hitters during 2015. Incidentally, it is not true that, viewed as a 

group, all major league hitters are headed toward mediocrity. Hitters among the top 10 in 

2014, who were not among the top 10 in 2015, were replaced by other mostly above-average 

hitters, who also were very lucky during 2015. Observed regression toward the mean occurs 

for individuals or subsets of individuals, not for entire groups. 

 

 
The Regression Fallacy 

 

The regression fallacy is committed whenever regression toward the mean is 

interpreted as a real, rather than a chance, effect. 

 

Example: Aeroplane landing effect 

 

Some trainees were praised after very good landings, while others were reprimanded 

after very bad landings. On their next landings, praised trainees did more poorly and 

reprimanded trainees did better. It was concluded, therefore, that praise hinders but a 

reprimand helps performance! 

 

A valid conclusion considers regression toward the mean. It’s reasonable to assume 

that, in addition to skill, chance plays a role in landings. Some trainees who made very 

good landings were lucky. while some who made very bad landings were unlucky. 

 

 

 



81 

 

Avoiding the Regression Fallacy. 

The regression fallacy can be avoided by splitting the subset of extreme 

observations into two groups. In the previous example, one group of trainees would 

continue to be praised after very good landings and reprimanded after very poor landings. 

A second group of trainees would receive no feedback whatsoever after very good and 

very bad landings. In effect, the second group would serve as a control for regression 

toward the mean, since any shift toward the mean on their second landings would be 

due to chance. Most important, any observed difference between the two groups would be 

viewed as a real difference not attributable to the regression effect. 



82 

 

UNIT IV 

The Basics of NumPy Arrays 

Data manipulation in Python is nearly synonymous with 

NumPy array manipulation. NumPy array manipulation to 

access data and subarrays, and to split, reshape, and join the 

arrays 

NumPy Array Attributes 
 

a one-dimensional, two-dimensional, and three-dimensional 

array. 

 

NumPy’s random number generator, which we will seed with 

a set value in order to ensure that the same random arrays are 

generated 

Syntax: 

numpy.random.randint(low, high, size, dtype=’l’) 
 

import numpyas np 

np.random.seed(0) # seed for reproducibility 

 

x1 = np.random.randint(10, size=6) # One-dimensional array 
#                  low value, high value, size 

x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array 

x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional array 

 

print("x3 ndim: ", x3.ndim) 

print("x3 shape:", x3.shape) 

print("x3 size: ", x3.size) 

// output 
x3 ndim: 3 

x3 shape: (3, 4, 5) 

x3 size: 60 #size int or tuple of ints, optional 
Output shape. If the given shape is, e.g., (m, n, k), 

then m * n * k samples are drawn. 
 

 

print("dtype:", x3.dtype) #data type of the array 



83 

 

 

dtype: int64 
 

itemsize, which lists the size (in bytes) of each array element, 

and nbytes, which lists the total size (in bytes) of the array 

 
print("itemsize:", x3.itemsize, "bytes") 

print("nbytes:", x3.nbytes, "bytes") 

 

itemsize: 8 bytes 

nbytes: 480 bytes # 8 bytes * 60[m*n*k] 

Array Indexing: Accessing Single Elements 
In a one-dimensional array, you can access the ith value 

(counting from zero) by specifying the desired index in square 

brackets. 
 

In[5]: x1 

Out[5]: array([5, 0, 3, 3, 7, 9])  
# produced since randomly generated  
In[6]: x1[0] 

Out[6]: 5 

In[7]: x1[4] 

Out[7]: 7 

 

To index from the end of the array, you can use negative 

indices: 
Out[5]: array([5, 0, 3, 3, 7, 9]) # produced since randomly generated 

In[8]: x1[-1] 

Out[8]: 9 

In[9]: x1[-2] 

Out[9]: 7 

 

In a multidimensional array, you access items using a comma-separated tuple of 

indices: 
 

In[10]: x2 

Out[10]: array([[3, 5, 2, 4], 

                            [7, 6, 8, 8], 



84 

 

                            [1, 6, 7, 7]]) 

 

     Row, column 

In[11]: x2[0, 0] 

Out[11]: 3 

 
In[12]: x2[2, 0] 

Out[12]: 1 

In[13]: x2[2, -1] 

Out[13]: 7 

 

modify values using any of the above index notation 
In[14]: x2[0, 0] = 12 

x2 

 

Out[14]: array([[12, 5, 2, 4], 

[ 7, 6, 8, 8], 

[ 1, 6, 7, 7]]) 
 

if you attempt to insert a floating-point value to an integer array, the value will 

be silently truncated. 
 

array([5, 0, 3, 3, 7, 9]) 

In[15]: x1[0] = 3.14159 # this will be truncated! 

x1 

Out[15]: array([3, 0, 3, 3, 7, 9]) 
 

Array Slicing: Accessing Subarrays 
Just as we can use square brackets to access individual array 

elements, we can also use them to access subarrays with the slice 

notation, marked by the colon (:) character. 
Syntax 

x[start:stop:step] 
If any of these are unspecified, they default to the values 

start=0, stop=size of dimension, step=1. 
 

 

In[16]: x = np.arange(10) 

x 
Out[16]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

 

In[17]: x[:5] # first five elements 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 



85 

 

Out[17]: array([0, 1, 2, 3, 4]) 

 

In[18]: x[5:] # elements after index 5 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

Out[18]: array([5, 6, 7, 8, 9]) 

 

In[19]: x[4:7] # middle subarray 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

Out[19]: array([4, 5, 6]) 

 

In[20]: x[::2] # every other element 

Out[20]: array([0, 2, 4, 6, 8]) 

Prints every second element 

 

In[21]: x[1::2] # every other element, starting at index 1 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

Out[21]: array([1, 3, 5, 7, 9]) 

 

In[22]: x[::-1] # all elements, reversed 
Out[22]: array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0]) 

 

In[23]: x[5::-2] # reversed every other from index 5 from array [x] 
Out[23]: array([5, 3, 1]) 

 

x[6::-2]  

array([6, 4, 2, 0]) 
 

 

 

Multidimensional subarrays 
Multidimensional slices work in the same way, with multiple 

slices separated by commas. 

For example 
 

In[24]: x2 

Out[24]: array([[12, 5, 2, 4], 

[ 7, 6, 8, 8], 

[ 1, 6, 7, 7]]) 

In[25]: x2[:2, :3] # two rows, three columns 

 

 



86 

 

Out[25]: array([[12, 5, 2], 

[ 7, 6, 8]]) 

 
In[26]: x2[:3, ::2] # all rows, every other column, prints every other 

element 

Out[26]: array([[12, 2], 

[ 7, 8], 

[ 1, 7]]) 

 

In[27]: x2[::-1, ::-1]   #All rows and columns are reversed. 
Out[27]: array([[ 7, 7, 6, 1], 

[ 8, 8, 6, 7], 

[ 4, 2, 5, 12]]) 

 
Example – STEP by STEP breakup. 

In x2 
Out array([[3, 5, 2, 4],  

[7, 6, 8, 8],  

[1, 6, 7, 7]]) 

 

In X2[::-1] 

array([[1, 6, 7, 7],  

[7, 6, 8, 8],  

[3, 5, 2, 4]]) 

============================================= 

In x2[::-1, ::-1] 

array([[7, 7, 6, 1],  

[8, 8, 6, 7],  

[4, 2, 5, 3]]) 
X2 

array([[3, 5, 2, 4],  

[7, 6, 8, 8],  

[1, 6, 7, 7]]) 

x2[::-2] 

array([[1, 6, 7, 7],  

[3, 5, 2, 4]]) 

 

x2[::-2,::-2] 

array([[7, 6],  

[4, 5]]) 

 

 

x2[::-3] 



87 

 

array([[1, 6, 7, 7]]) 

 

x2[::-3,::-3] 

array([[7, 1]]) 

 

 

Accessing array rows and columns 

Accessing single rows or columns of an array can be done by 

combining indexing and slicing, using an empty slice marked by a 

single colon (:) 
 

array([[12, 5, 2, 4], 

[ 7, 6, 8, 8], 

[ 1, 6, 7, 7]]) 

 
 

In[28]: print(x2[:, 0]) # first column of x2 

[12 7 1] 

 

In[29]: print(x2[0, :]) # first row of x2 

[12 5 2 4] 

 

 Or 

In[30]: print(x2[0]) # equivalent to x2[0, :] 

[12 5 2 4] 

 
 

Subarrays as no-copy views 

One important—and extremely useful—thing to know about 

array slices is that they return views rather than copies of the 

array data. 
 
In[31]: print(x2) 

[[12 5 2 4] 

[ 7 6 8 8] 

[ 1 6 7 7]] 

 

Let’s extract a 2×2 subarray from this: 

In[32]: x2_sub = x2[:2, :2] 

print(x2_sub) 

[[12 5] 

[ 7 6]] 
 



88 

 

if we modify this subarray we’ll see that the original array is changed 
 

In[33]: x2_sub[0, 0] = 99 

print(x2_sub) 

[[99 5] 

[ 7 6]] 

In[34]: print(x2) 

[[99 5 2 4] 

[ 7 6 8 8] 

[ 1 6 7 7]] 
 

 

Creating copies of arrays 

 

Despite the nice features of array views, it is sometimes useful 

to instead explicitlycopy the data within an array or a 

subarray. 
 

copy() 
 

In[35]: x2_sub_copy = x2[:2, :2].copy() 

print(x2_sub_copy) 

 

Out: [[99 5] 

[ 7 6]] 

If we now modify this subarray, the original array is not 

touched: 
In[36]: x2_sub_copy[0, 0] = 42 

print(x2_sub_copy) 

[[42 5] 

[ 7 6]] 

 
In[37]: print(x2) 

[[99 5 2 4] 

[ 7 6 8 8] 

[ 1 6 7 7]] 
 

 

Reshaping of Arrays 



89 

 

The most flexible way ofdoing this is with the reshape() 

method 
 

In[38]: grid = np.arange(1, 10).reshape((3, 3)) 

print(grid) 

 

out: 

[[1 2 3] 
[4 5 6] 

[7 8 9]] 

 

the size of the initial array must match the size of the reshaped 

array 

 

Another common reshaping pattern is the conversion of a one-

dimensional array into a two-dimensional row or column 

matrix. you can do this with the reshape method, or more 

easily by making use of the newaxis keyword within a slice 

operation: 
 

In[39]: x = np.array([1, 2, 3]) 

# row vector via reshape 

x.reshape((1, 3)) 

 

Out[39]: array([[1, 2, 3]]) 

 
In[40]: # row vector via newaxis 

x[np.newaxis, :]# notice 2 [[  this add 1 row, 3 col as axis to array 

Out[40]: array([[1, 2, 3]]) 

 

In[41]: x.reshape((3,1)) 

Out[41]: ([[1] 

  [2] 

  [3]]) 
Array Concatenation and Splitting 



90 

 

All of the preceding routines worked on single arrays. It’s also 
possible to combine multiple arrays into one, and to conversely split a 

single array into multiple arrays. 

 

Concatenation of arrays 

Concatenation, or joining of two arrays in NumPy, is primarily 

accomplished through the routines np.concatenate, np.vstack, and 
np.hstack. 
In[43]: x = np.array([1, 2, 3]) 

y = np.array([3, 2, 1]) 

np.concatenate([x, y])# Merges two arrays 
Out[43]: array([1, 2, 3, 3, 2, 1]) 

 
In[45]: grid = np.array([[1, 2, 3], 

[4, 5, 6]]) 

In[46]: # concatenate along the first axis 

np.concatenate([grid, grid]) 
 

Out[46]: array([[1, 2, 3], 

[4, 5, 6], 

[1, 2, 3], 

[4, 5, 6]]) 

 

For working with arrays of mixed dimensions, it can be clearer to use 
the np.vstack(vertical stack) and np.hstack (horizontal stack) 

functions: 
In[48]: x = np.array([1, 2, 3]) 

grid = np.array([[9, 8, 7], 

[6, 5, 4]]) 

# vertically stack the arrays 

np.vstack([x, grid]) 

Out[48]: array([[1, 2, 3], 

[9, 8, 7], 

[6, 5, 4]]) 

In[49] y=np.array([[99], 

  [99]]) 

np.hstack([grid,y]) 

Out[49]: array([[9,8,7,99], 

  [6,5,4,99]]) 

Splitting of arrays 



91 

 

The opposite of concatenation is splitting, which is implemented by 
the functions. 

np.split, np.hsplit, and np.vsplit. For each of these, we can pass a list 

of indices giving the split points: 
In[50]: x = [1, 2, 3, 99, 99, 3, 2, 1] 

x1, x2, x3 = np.split(x, [3, 5])  
# 3, 5 represents indices so elements are split at 3 and 5 

print(x1, x2, x3) 

[1 2 3] [99 99] [3 2 1] 

 
In[51]: grid = np.arange(16).reshape((4, 4)) 

grid 

Out[51]: array([[ 0, 1, 2, 3], 
[ 4, 5, 6, 7], 

[ 8, 9, 10, 11], 

[12, 13, 14, 15]]) 

In[52]: upper, lower = np.vsplit(grid, [2]) 

print(upper) 

print(lower) 

 

[[0 1 2 3] 
[4 5 6 7]] 

 

[[ 8 9 10 11] 

[12 13 14 15]] 

In[53]: left, right = np.hsplit(grid, [2]) 

print(left) 

print(right) 

[[ 0 1] 
[ 4 5] 

[ 8 9] 

[12 13]] 

 

[[ 2 3] 

[ 6 7] 

[10 11] 
[14 15]] 
 

2. Aggregations: Min, Max, and Everything in Between 



92 

 

Summing the Values in an Array 
In[1]: import numpyas np 

In[2]: L = np.random.random(100) 

  sum(L) 

Out[2]: 55.61209116604941 

 

 

NumPy’s version of theoperation is computed much more quickly: 

In[4]: big_array= np.random.rand(1000000)#10 lakh 

%timeitsum(big_array)#Measure execution time of small code snippets 

%timeitnp.sum(big_array) 
 

10 loops, best of 3: 104 ms per loop 

1000 loops, best of 3: 442 μs per loop 

 
the sum function and the np.sum function are not identical. 

Minimum and Maximum 

Similarly, Python has built-in min and max functions, used to 
find the minimum value and maximum value of any given array: 
In[5]: min(big_array), max(big_array) 

Out[5]: (1.1717128136634614e-06, 0.9999976784968716) 

 

NumPy’s corresponding functions have similar syntax, and again 

operate much morequickly: 
 
In[6]: np.min(big_array), np.max(big_array) 

Out[6]: (1.1717128136634614e-06, 0.9999976784968716) 

 
Other syntax are as below: 

 
For min, max, sum, and several other NumPy aggregates, a shorter 

syntax is to usemethods of the array object itself: 
In[8]: print(big_array.min(), big_array.max(), big_array.sum()) 

 

1.17171281366e-06 0.999997678497 499911.628197 

 

Multidimensional aggregates 

One common type of aggregation operation is an aggregate along a 

row or column 
 



93 

 

In[9]: M = np.random.random((3, 4))#3 rows and 4columns 

print(M) 

 

[[ 0.8967576 0.03783739 0.75952519 0.06682827] 

[ 0.8354065 0.99196818 0.19544769 0.43447084] 

[ 0.66859307 0.15038721 0.37911423  0.6687194 ]] 

 

By default, each NumPy aggregation function will return the 
aggregate over the entirearray: 
In[10]: M.sum() 

Out[10]: 6.0850555667307118 # returns sum of allvalues 

 

we can find the minimum value within each column by specifying 
axis=0 
In[11]: M.min(axis=0) #axis 0 represents column 

Out[11]: array([ 0.66859307, 0.03783739, 0.19544769, 0.06682827]) 

 

Similarly, we can find the maximum value within each row: 
In[12]: M.max(axis=1)#axis 1 represents row 

Out[12]: array([ 0.8967576 , 0.99196818, 0.6687194 ]) 

 

Other aggregation functions 

 
 

Example: What Is the Average Height of US Presidents? 



94 

 

In[13]: !head -4 data/president_heights.csv 

#The datas are in the formorder,name,height(cm) 

1,George Washington,189 
2,John Adams,170 

3,Thomas Jefferson,189 

#Pandas package is used 

In[14]: import pandas as pd 

data = pd.read_csv('data/president_heights.csv') 

heights = np.array(data['height(cm)']) 

print(heights) 
[189 170 189 163 183 171 185 168 173 183 173 173 175 178 183 193 178 

173174 183 183 168 170 178 182 180 183 178 182 188 175 179 183 193 

182 183177 185 188 188 182 185] 

 

In[15]: print("Mean height: ", heights.mean()) 

print("Standard deviation:", heights.std()) 

print("Minimum height: ", heights.min()) 

print("Maximum height: ", heights.max()) 
Mean height: 179.738095238 

Standard deviation: 6.93184344275 

Minimum height: 163 

Maximum height: 193 

 
In[16]: print("25th percentile: ",np.percentile(heights, 25)) 

print("Median: ", np.median(heights)) 

print("75th percentile: ", np.percentile(heights,75)) 

25th percentile: 174.25 #First quartile 

Median: 182.0 

75th percentile: 183.0 #Third quartile 

 

it’s more useful to see a visual representation of this data 

In[17]: %matplotlib inline 

import matplotlib.pyplotas plt 

import seaborn; seaborn.set() # set plot style 

#Seaborn is a Python data visualization library based on matplotlib 

In[18]: plt.hist(heights) 

plt.title('Height Distribution of US Presidents') 

plt.xlabel('height (cm)') 

plt.ylabel('number'); 



95 

 

 
Figure 2-3. Histogram of presidential heights 

 

3. Computation on Arrays: Broadcasting 

Broadcasting is simply a set of rules for applying binary 

ufuncs (addition, subtraction, multiplication, etc.) on arrays of 

different sizes. 

Introducing Broadcasting 
Arrays of the same size, binary operations are performed on anelement-by-

element basis 

In[1]: import numpyas np 

In[2]: a = np.array([0, 1, 2]) 

b = np.array([5, 5, 5]) 

a + b 

Out[2]: array([5, 6, 7]) 

Broadcasting allows these types of binary operations to be performed 

on arrays of different sizes 

 



96 

 

 

Figure 2.4 

 

In[3]: a + 5 

Out[3]: array([5, 6, 7]) 

 
In[4]: M = np.ones((3, 3)) 

M 

Out[4]: array([[ 1., 1., 1.], 
[ 1., 1., 1.], 

[ 1., 1., 1.]]) 

In[5]: M + a 
Out[5]: array([[ 1., 2., 3.], 

[ 1., 2., 3.], 

[ 1., 2., 3.]]) 
Here the one-dimensional array a is stretched, or broadcast, across the 

seconddimension in order to match the shape of M. 

 

Broadcasting of both arrays 

In[6]: a = np.arange(3) 

b = np.arange(3)[:, np.newaxis] 



97 

 

print(a) 
print(b) 

 

 
[0 1 2] #print a 

[[0] # print b 

[1] 
[2]] 

In[7]: a + b 

Out[7]: array([[0, 1, 2], 
[1, 2, 3], 

[2, 3, 4]]) 

 

Rules of Broadcasting 

 
• Rule 1: If the two arrays differ in their number of dimensions, the 

shape of the one with fewer dimensions is paddedwith ones on its 

leading (left) side. 
• Rule 2: If the shape of the two arrays does not match in any 

dimension, the array with shape equal to 1 in that dimension is 

stretched to match the other shape. 
• Rule 3: If in any dimension the sizes disagree and neither is equal to 

1, an error is raised. 

 

Broadcasting example 1 

Let’s look at adding a two-dimensional array to a one-dimensional 

array: 
In[8]: M = np.ones((2, 3)) 

a = np.arange(3) 

 
out: [[1. 1. 1.] 

[1. 1. 1.]] #output of M 

[0 1 2] # output of a 
 

Shapes of the arrays are 

M.shape = (2, 3) 
a.shape = (3,) 



98 

 

By rule 1 that the array a has fewer dimensions, so we pad it on the 
left with ones: 

M.shape -> (2, 3) 

a.shape -> (1, 3) 
By rule 2, we now see that the first dimension disagrees, so we stretch 

this dimensionto match: 

M.shape -> (2, 3) 
a.shape -> (2, 3) 

The shapes match, and we see that the final shape will be (2, 3): 

In[9]: M + a 
Out[9]: array([[ 1., 2., 3.], 

[ 1., 2., 3.]]) 

 

Broadcasting example 2 

example where both arrays need to be broadcast 
In[10]: a = np.arange(3).reshape((3, 1)) 

b = np.arange(3) 

 
 

a.shape = (3, 1) 

b.shape = (3,) 
out: [[0] 

      [1] 

      [2]] 
     [0 1 2] 

Rule 1 says we must pad the shape of b with ones: 

a.shape -> (3, 1) 
b.shape -> (1, 3) 

 

rule 2 tells us that we upgrade each of these ones to match the 
corresponding size of the other array 

a.shape -> (3, 3) 

b.shape -> (3, 3) 
 

the result matches, these shapes are compatibleIn[11]: a + b # refer 

figure 2.4  
Out[11]: array([[0, 1, 2], 



99 

 

[1, 2, 3], 
[2, 3, 4]])  

Broadcasting example 3 

an example in which the two arrays are not compatible 
In[12]: M = np.ones((3, 2)) 

a = np.arange(3) 

 
Out  [[1. 1.] 

 [1. 1.] 

 [1. 1.]]  # M output 
 

[0 1 2] # a output 

 
M.shape = (3, 2) 

a.shape = (3,) 
rule 1 tells us that we must pad the shape of a with ones: 

M.shape -> (3, 2) 

a.shape -> (1, 3) 
rule 2, the first dimension of a is stretched to match that of M 

M.shape -> (3, 2)# since its 2 here we cannotstrech 

a.shape -> (3, 3) 
rule 3—the final shapes do not match, so these two arrays are 

incompatible 

In[13]: M + a 
 

Error: ValueError: operands could not be broadcast together with 

shapes (3,2) (3,) 
 

The Right-side padding is done explicitly by reshaping the array 

 
A new keyword np.newaxis is used for this purpose. 

 

In[14]: a[:, np.newaxis].shape 
Out[14]: (3, 1) # [0 1 2] is changed 

 

In[15]: M + a[:, np.newaxis] 
 



100 

 

[[1. 1.]  [[0] 
 [1. 1.] +    [1] 

 [1. 1.]]   [2]] 

 
Out[15]: array([[ 1., 1.], 

[ 2., 2.], 

[ 3., 3.]]) 
 

Broadcasting in Practice 

Centring an arrayufuncs allow a NumPy user to remove the need to 
explicitly write slow Python loops. Broadcasting extends this ability. 

example is centering an array of data 

 
In[17]: X = np.random.random((10, 3)) 

 
Out 
([[0.6231582 , 0.62830284, 0.48405648], 
       [0.4893788 , 0.96598238, 0.99261057], 
       [0.18596872, 0.26149718, 0.41570724], 
       [0.74732252, 0.96122555, 0.03700708], 
       [0.71465724, 0.92325637, 0.62472884], 
       [0.53135009, 0.20956952, 0.78746706], 
       [0.67569877, 0.45174937, 0.53474695], 
       [0.91180302, 0.61523213, 0.18012776], 
       [0.75023639, 0.46940932, 0.11044872], 
       [0.86844985, 0.07136273, 0.00521037]]) 
 

In[18]: Xmean= X.mean(0) 

Xmean 

Out[18]: array([0.64980236, 0.55575874, 0.41721111]) 
 # mean values of elements in first, second, third column. 

 

we can center the X array by subtracting the mean value from each 
element in array.(Ex: ) 

 

In[19]: X_centered= X – Xmean 
array([[-0.02664416,  0.0725441 ,  0.06684537], 
       [-0.16042356,  0.41022364,  0.57539946], 
       [-0.46383364, -0.29426156, -0.00150386], 
       [ 0.09752016,  0.40546681, -0.38020403], 
       [ 0.06485488,  0.36749763,  0.20751773], 
       [-0.11845227, -0.34618922,  0.37025595], 
       [ 0.02589641, -0.10400937,  0.11753584], 
       [ 0.26200066,  0.05947339, -0.23708334], 



101 

 

       [ 0.10043403, -0.08634941, -0.30676239], 
       [ 0.21864749, -0.484396  , -0.41200073]]) 

 

we can check that the centered array has near zero mean by 

In[20]: X_centered.mean(0) 
Out[20]: array([ 0.00000000e+00, -1.11022302e-16, -6.66133815e-17]) 

 

 

Plotting a two-dimensional function 

 Broadcasting is very useful in displaying images with 2 

dimensional functions. to define a function z = f(x, y), broadcasting 
can be used to compute the function across the grid. 

In[21]: # x and y have 50 steps from 0 to 5 

x = np.linspace(0, 5, 50) # Returns num evenly spaced samples, calculated over the 

interval [start, stop]. 
y = np.linspace(0, 5, 50)[:, np.newaxis] 

z = np.sin(x)**10+np.cos(10+y*x) * np.cos(x) 

 
Out [z]  

 

[[-0.83907153 -0.83470697 -0.8216586  ...  0.8956708   0.68617261   0.41940746] 

 [-0.83907153 -0.82902677 -0.8103873  ...  0.92522407  0.75321348   0.52508175] 

 [-0.83907153 -0.82325668 -0.79876457 ...  0.96427357  0.84172689   0.66446403] 

 ... 

 [-0.83907153 -0.48233077 -0.01646558 ...  0.96449925  0.75196531   0.41982581] 

 [-0.83907153 -0.47324558  0.00392612 ...  0.92542163  0.68540362   0.37440839] 

 [-0.83907153 -0.46410908  0.02431613 ...  0.89579384  0.65690314   0.40107702]] 
We’ll use Matplotlib to plot this two-dimensional array 

In[22]: %matplotlib inline 

import matplotlib.pyplotas plt 

In[23]: plt.imshow(z, origin='lower',extent=[0, 5, 0, 5],cmap='viridis') 

plt.colorbar(); 
 

# z -array,  

origin - [0,0] index of z should be at the lower-left corner of the plot, 
extent = left, right, bottom, and top boundaries of the image,  

cmap - color map. 



102 

 

 
 

4.Comparisons, Masks, and Boolean Logic 

 
The use of Boolean masks to examine and manipulate values within 
NumPy arrays.  

Masking comes up when you want to extract, modify, count, or 

otherwise manipulate values in an array based on some criterion. 

Example: Count all values greater than a certain value. 

Remove all outliers that are above some threshold. 

 

Example: Counting Rainy Days 

Imagine you have a series of data that represents the amount of 

precipitation each day for a year in a given city. 
In[1]:  

import numpyas np 

import pandas as pd 

# use Pandas to extract rainfall inches as a NumPy array 

rainfall=pd.read_csv('data/Seattle2014.csv')['PRCP'].values 

 # reads PRCP column values 
inches = rainfall / 254 # 1/10mm -> inches 

inches.shape 
Out[1]: (365,) 

 

Array contains 365 values 
Histogram of rainy daysgenerated using Matplotlib 

 



103 

 

import matplotlib.pyplotas plt 

import seaborn; seaborn.set() # set plot styles 

In[3]: plt.hist(inches, 40); # 40 represents number of bars 

 
plt.hist(inches, 2); 

 
 

Comparison Operators as ufuncs 

In[4]: x = np.array([1, 2, 3, 4, 5]) 

In[5]: x <3 # less than 

Out[5]: array([ True, True, False, False, False], dtype=bool) 



104 

 

 
 
 

In[12]: rng= np.random.RandomState(0) # pseudo-random number 

generator 
x = rng.randint(10, size=(3, 4)) # max number (row, column) 

x 

Out[12]: array([[5, 0, 3, 3], 
[7, 9, 3, 5], 

[2, 4, 7, 6]]) 

 
In[13]: x <6 

Out[13]: array([[ True, True, True, True], 

[False, False, True, True], 
[True, True, False, False]], dtype=bool) 

 

Working with Boolean Arrays 

In[14]: print(x) 

[[5 0 3 3] 

[7 9 3 5] 
[2 4 7 6]] 

 

Counting entries 

In[15]: # how many values less than 6? 

np.count_nonzero(x <6)# prints values less than 6 

Out[15]: 8 
 



105 

 

(Or) 
 

In[16]: np.sum(x <6) 

Out[16]: 8 

False is interpreted as 0, and True is interpreted as 1. 

Benefit of sum(). This summation can be done along rows or 

columns as well. 

In[17]: np.sum(x <6, axis=1)# how many values less than 6 in each 

row? 

#axis 1 = row 
Out[17]: array([4, 2, 2]) 

 

Counts the number of values less than 6 in each row of the matrix. 

 

If we’re interested in quickly checking whether any or all the 

values are true, we can use (you guessed it) np.any() or np.all(): 

In[18]: np.any(x >8)# are there any values greater than 8? 

Out[18]: True 
 

np.all() and np.any() can be used along particular axes as well. 

For example: 

In[22]: # are all values in each row less than 8? 

np.all(x <8, axis=1) 

Out[22]: array([ True, False, True], dtype=bool) 
 

Here all the elements in the first and third rows are less than 8, while 

this is not the case for the second row. 
 

BOOLEAN OPERATORS 

We have already seen 

 All days with rain less than four inches, 

 All days with rain greater than two inches 

 All days with rain less than four inches and greater than one 

inch? 

 

Accomplished through Python’s bitwise logic operators, &, |, ^, 

and ~. 



106 

 

 

In[23]: np.sum((inches >0.5) &(inches <1)) 

Out[23]: 29 # days with rainfall between 0.5 and 1 

 

 Or 

 

In[24]: np.sum(~( (inches <= 0.5) | (inches >= 1) )) 
Out[24]: 29 

 

 
 

Boolean Arrays as Masks 

In[26]: x 

Out[26]: array([[5, 0, 3, 3], 
[7, 9, 3, 5], 

[2, 4, 7, 6]]) 

 

Boolean array for this condition 

 

In[27]: x <5 
Out[27]: array([[False, True, True, True], 

[False, False, True, False], 

[True, True, False, False]], dtype=bool) 

 

Now to select these values from the array, we can simply index on 

this Boolean array; 

this is known as a masking operation: 

In[28]: x[x <5] 

Out[28]: array([0, 3, 3, 3, 2, 4]) 
 



107 

 

 

Using the Keywords and/or Versus the Operators &/| 

The difference is this:andandor gauge the truth or falsehood of 

entire object, while & and | refer to bits within each object. In Python, 
all nonzero integers will evaluate as True 

 

In[30]: bool(42), bool(0) 
Out[30]: (True, False) 

In[31]: bool(42 and 0) 

Out[31]: False 
In[32]: bool(42 or 0) 

Out[32]: True 

 
In[33]: bin(42) 

Out[33]: '0b101010' #binary representation 
 

In[34]: bin(59) 

Out[34]: '0b111011' #binary representation 
 

In[36]: bin(42 | 59) 

Out[36]: '0b111011' 
 

1 = True and 0 = False 

 
In[37]: A = np.array([1, 0, 1, 0, 1, 0], dtype=bool) 
B = np.array([1, 1, 1, 0, 1, 1], dtype=bool) 

A | B 

Out[37]: array([ True, True, True, False, True, True], dtype=bool) 

 

Using or on these arrays will try to evaluate the truth or 

falsehood of the entire array object, which is not a well-defined value: 
 

In[38]: A or B 

 
ValueError Traceback (most recent call last) 

<ipython-input-38-5d8e4f2e21c0> in <module>() 

----> 1 A or B 



108 

 

 
ValueError: The truth value of an array with more than one element 

is... 

 

5. Fancy Indexing 
We’ll look at another style of array indexing, known as fancy indexing 

instead of (e.g., arr[0]), slices (e.g., arr[:5]),. 

 

Exploring Fancy Indexing 
Fancy indexing is conceptually simple: it means passing an 

array of indices to access multiple array elements at once. For 

example, consider the following array. 

In[1]:  

import numpyas np 

rand = np.random.RandomState(42) # 42- type of random number 

generator 
x = rand.randint(100, size=10) 

print(x) 

[51 92 1471 60 20 82 86 74 74] 
Suppose we want to access three different elements. We could do it 

like this: 

 
In[2]: [x[3], x[7], x[2]] 

Out[2]: [71, 86, 14] 

 
Alternatively, we can pass a single list or array of indices to obtain the 

same result: 

[51 92 14 7160 20 82 86 74 74] 
 

In[3]: ind= [3, 7, 4] 

x[ind] 
Out[3]: array([71, 86, 60]) 

 
[51 92 14 7160 20 82 86 74 74] 

 

In[4]: ind= np.array([[3, 7], 



109 

 

[4, 5]]) 
x[ind] 

Out[4]: array([[71, 86], 

[60, 20]]) 
 

In[5]: X = np.arange(12).reshape((3, 4)) 

X 
Out[5]: array([[ 0, 1, 2, 3], 

[ 4, 5, 6, 7], 

[ 8, 9, 10, 11]]) 
 

The first index refers to the row, and the second to the column: 

In[6]: row = np.array([0, 1, 2]) 
col = np.array([2, 1, 3]) 

X[row, col] 
Out[6]: array([ 2, 5, 11]) 

 

The first value in the result is X[0, 2], the second is X[1, 1], and 
the third is X[2, 3]. The pairing of indices in fancy indexing follows 

all the broadcasting rules. 

 

if we combine a column vector and a row vector within the indices, 

we get a two-dimensional result: 

 
In[7]: X[row[:, np.newaxis], col] 

Out[7]: array([[ 2, 1, 3], 

                        [ 6, 5, 7], 
                        [10, 9, 11]]) 

Combined Indexing 

Fancy indexing can be combined with the other indexing schemes 
we’ve seen: 

In[9]: print(X) 

                      0 1 2 3 
0 [[ 0 1 2 3] 

1 [ 4 5 6 7] 

2 [ 8910 11]] 
 



110 

 

We can combine fancy and simple indices: 

In[10]: X[2, [2, 0, 1]] #row, indices 

Out[10]: array([10, 8, 9]) 

We can also combine fancy indexing with slicing: 

 

[[ 0 1 2 3] 

 [ 4 5 6 7] 
 [ 8910 11]] 

 

In[11]: X[1:, [2, 0, 1]] #row, indices 
Out[11]: array([[ 6, 4, 5], 

[10, 8, 9]]) 

 
[[ 0 1 2 3] 

 [ 4 5 6 7] 
 [ 8 9 10 11]] 

 

And we can combine fancy indexing with masking: 

In[12]: mask = np.array([1, 0, 1, 0],dtype=bool))# masked with 1 is 

printed and rest are blocked 

X[row[:, np.newaxis], mask] 
Out[12]: array([[ 0, 2], 

[ 4, 6], 

[ 8, 10]]) 
 

Modifying Values with Fancy Indexing 

Just as fancy indexing can be used to access parts of an array, it can 
also be used to modify parts of an array  

In[18]: x = np.arange(10)# returns evenly spaced values with in a 

given interval. 

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

i = np.array([2, 1, 8, 4]) # represents indices 

 x[i] = 99 

 print(x) 
[ 0 99 99 3 99 5 6 7 99 9] # respective indices are replaced by 

values 99 



111 

 

 

x[i] -= 10 # x[i]=x[i]-10 

print(x) #minuses value 10 and prints it 

[ 0 89 89 3 89 5 6 7 89 9] 
 

In[20]: x = np.zeros(10) # print 10 zeros 

x[[0, 0]] = [4, 6] # assign x[0]=4 , x[0]=6 

print(x)  
[ 6. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 
First assign x[0] = 4, followed by x[0] = 6. The result, of course, is 

that x[0] contains the value 6. 

Array [ 6. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 
0  1  2  3   4  5  6  7   8  9 

 

In[21]: i = [2, 3, 3, 4, 4, 4]  

x[i] += 1  # x[2]=x[2]+1 

x 

 
Out[21]: array([ 6., 0., 1., 1., 1., 0., 0., 0., 0., 0.]) # the value is 1 

since the values are overwritten. 

 
But if you want to update then we have to use 

In[22]: x = np.zeros(10)  

i = [2, 3, 3, 4, 4, 4] 

  np.add.at(x, i, 1) # array, indices, values 

  print(x)  

0 0 0 0 0 0 0 0 0 0 

0 0 1 1  

0 0 1 2 

 
[ 0. 0. 1. 2. 3. 0. 0. 0. 0. 0.] 
 

  



112 

 

Structured Data: NumPy’s Structured Arrays 

In[2]: name = ['Alice', 'Bob', 'Cathy', 'Doug'] 

age = [25, 45, 37, 19] 

weight = [55.0, 85.5, 68.0, 61.5] 
Theres nothing here that tells us that the three arrays are related; it 

would be more natural if we could use a single structure to store all of 

this data.  
In[3]: x = np.zeros(4, dtype=int) 

 

We can similarly create a structured array using a compound data type 
specification: 

In[4]: # Use a compound data type for structured arrays 

data = np.zeros(4, dtype={'names':('name', 'age', 'weight'), 
'formats':('U10', 'i4', 'f8')}) # 4 represents number of names 

print(data.dtype) 
 

OUT: [('name', '<U10'), ('age', '<i4'), ('weight', '<f8')] 

 
'U10' translates to “Unicode string of maximum length 10,”  

'i4' translates to “4-byte (i.e., 32 bit) integer,” and  

'f8' translates to “8-byte (i.e., 64 bit) float.” 
Now that we’ve created an empty container array, we can fill the array 

with our lists of values: 

 
In[5]: data['name'] = name 

data['age'] = age 

data['weight'] = weight 
print(data) 

Out 

[('Alice', 25, 55.0) ('Bob', 45, 85.5) ('Cathy', 37, 68.0)('Doug', 19, 
61.5)] 

 

you can now refer to values either by index or by name: 
 

In[6]: # Get all names 

data['name'] 
Out[6]: array(['Alice', 'Bob', 'Cathy', 'Doug'],dtype='<U10') 



113 

 

In[7]: # Get first row of data 
data[0] 

Out[7]: ('Alice', 25, 55.0) 

In[8]: # Get the name from the last row 
data[-1]['name']# prints last value 

Out[8]: 'Doug' 

In[9]: # Get names where age is under 30 
data[data['age'] <30]['name'] 

Out[9]: array(['Alice', 'Doug'],dtype='<U10') 

 

Creating Structured Arrays 
Dictionary method 

In[10]: np.dtype({'names':('name', 'age', 'weight'), 
'formats':('U10', 'i4', 'f8')}) 

Out[10]: dtype([('name', '<U10'), ('age', '<i4'), ('weight', '<f8')]) 
 

For clarity, numerical types can be specified with Python types or 

NumPy dtypes instead: 
In[11]: np.dtype({'names':('name', 'age', 'weight'), 

'formats':((np.str_, 10), int, np.float32)}) 

Out[11]: dtype([('name', '<U10'), ('age', '<i8'), ('weight', '<f4')]) 
 

A compound type can also be specified as a list of tuples: 

In[12]: np.dtype([('name', 'S10'), ('age', 'i4'), ('weight', 'f8')]) 
Out[12]: dtype([('name', 'S10'), ('age', '<i4'), ('weight', '<f8')]) 

 

If the names of the types do not matter, then it can be written as 
In[13]: np.dtype('S10,i4,f8') 

Out[13]: dtype([('f0', 'S10'), ('f1', '<i4'), ('f2', '<f8')]) 

 



114 

 

 
More Advanced Compound Types 

In[14]: tp= np.dtype([('id', 'i8'), ('mat', 'f8', (3, 3))]) #element , dtype 
X = np.zeros(1, dtype=tp) #shape, datatype 

print(X[0]) 

(0, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) 
print(X['mat'][0]) 

[[ 0. 0. 0.] 

[ 0. 0. 0.] 
[ 0. 0. 0.]] 

 

 

RecordArrays: Structured Arrays with a Twist 

NumPy also provides the np.recarrayclass, which is almost identical 

to the structured arrays.  

 

In[15]: data['age'] 

Out[15]: array([25, 45, 37, 19], dtype=int32) 
 

If we view our data as a record array instead, we can access this with 

slightly fewer keystrokes: 
 

In[16]: data_rec= data.view(np.recarray) 

data_rec.age 
Out[16]: array([25, 45, 37, 19], dtype=int32) 

 



115 

 

The downside is that for record arrays, there is some extra overhead 
involved in accessing the fields. 

 

In[17]: %timeit data['age'] 
%timeitdata_rec['age'] 

%timeitdata_rec.age 

1000000 loops, best of 3: 241 ns per loop 
100000 loops, best of 3: 4.61 μs per loop 

100000 loops, best of 3: 7.27 μs per loop 

 

Data Manipulation with Pandas 

 

Data Indexing and Selection 

 Accessing and modifying values in Pandas Series and 

DataFrameobjects 

Data Selection in Series 

 a Series object acts in many ways like a one-dimensional 

NumPy array, and in many ways like a standard Python 
dictionary 

 

Series as dictionary 

Like a dictionary, the Series object provides a mapping from a 

collection of keys to a collection of values: 

In[1]: import pandas as pd 

data = pd.Series([0.25, 0.5, 0.75, 1.0], #values 

index=['a', 'b', 'c', 'd'])  # keys 

data 
 

Out[1]: a 0.25 

        b 0.50 
        c 0.75 

        d 1.00 

dtype: float64 
In[2]: data['b'] # returns the value of b in OUT[1] 

Out[2]: 0.5 

 
In[3]: 'a' in data # is a available in dataset 



116 

 

Out[3]: True 
 

In[4]: data.keys()#  returns a view of all objects 

Out[4]: Index(['a', 'b', 'c', 'd'], dtype='object')   
 

In[5]: list(data.items())# lists keys and values 

Out[5]: [('a', 0.25), ('b', 0.5), ('c', 0.75), ('d', 1.0)]  
 

The series can be extended by assigning values 

In[6]: data['e'] = 1.25 
Data 

 

Out[6]: a 0.25 
b 0.50 

c 0.75 
d 1.00 

e 1.25 

dtype: float64 
 

Series as one-dimensional array 

A Series builds on this dictionary-like interface and provides array-
style item selection via the same basic mechanisms as NumPy 

arrays—that is, slices, masking, and fancy indexing. 

 
Out[6]: a 0.25 

b 0.50 

c 0.75 
d 1.00 

e 1.25 

dtype: float64 
 

In[7]: # slicing by explicit index 

data['a':'c'] 
Out[7]: a 0.25 

b 0.50 

c 0.75 
dtype: float64 



117 

 

 
In[9]: # masking 

data[(data >0.3) &(data <0.8)] 

Out[9]: b 0.50 
c 0.75 

dtype: float64 

 
In[10]: # fancy indexing 

data[['a', 'e']] 

Out[10]: a 0.25 
e 1.25 

dtype: float64 
 slicing may be the source of the most confusion 

 when you are slicing with an explicit index (i.e., data['a':'c']), the 

final index is included in the slice, while when you’re slicing 
with an implicit index (i.e., data[0:2]), the final index is 

excludedfrom the slice. 

 
data['a':'c'] 

Out[7]: a 0.25 

b 0.50 
c 0.75 

 

 
data[0:2] 

a 0.25  

b 0.50 
 

Indexers: loc, iloc, and ix 

These slicing and indexing conventions can be a source of confusion.  
 

In[11]: data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5]) 

data 
Out[11]:  

Implicit   Explicit   Values 

0               1 a 
1               3 b 



118 

 

2               5 c 
dtype: object 

 

In[12]: # explicit index when indexing 
data[1] 

Out[12]: 'a' 

 
In[13]: # implicit index when slicing 

data[1:3] 

Out[13]: 3 b 
5 c 

dtype: object 

 
Because of this potential confusion in the case of integer indexes, 

Pandas provides some special indexer attributes that explicitly expose 
certain indexing schemes 

The loc attribute allows indexing and slicing that always references 

the explicit index: 
Out[11]:  

Implicit   Explicit   Values 

0               1 a 
1               3 b 

2               5 c 

dtype: object 
In[14]: data.loc[1] 

Out[14]: 'a' 

 
In[15]: data.loc[1:3] 

Out[15]: 1 a 

3 b 
dtype: object 

 

The ilocattribute allows indexing and slicing that always references 
the implicit Python-style index: 

  



119 

 

Implicit   Explicit   Values 
0               1 a 

1               3 b 

2               5 c 
dtype: object 

 

In[16]: data.iloc[1] 
Out[16]: 'b' 

 

In[17]: data.iloc[1:3] 
Out[17]: 3 b 

5 c 

dtype: object 
 

A third indexing attribute, ix, is a hybrid of the two, and for Series 
objects is equivalent to standard []-based indexing. 

 

“explicit is better than implicit.” 

 

 

Data Selection in DataFrame 

DataFrame acts in many ways like a two-dimensional or structured 

array, and in other ways like a dictionary of Series structures sharing 

the same index.  

 

 

DataFrame as a dictionary 

In[18]: area = pd.Series({'California': 423967, 'Texas': 695662, 

'New York': 141297, 'Florida': 170312, 

'Illinois': 149995})#area variable 
pop= pd.Series({'California': 38332521, 'Texas': 26448193, 

'New York': 19651127, 'Florida': 19552860, 

'Illinois': 12882135})#population variable 
data = pd.DataFrame({'area':area, 'pop':pop}) 

data 

 
 



120 

 

Out[18]:   area  pop 
California  423967  38332521 

Florida   170312  19552860 

Illinois  149995  12882135 
New York   141297  19651127 

Texas   695662  26448193 

The individual Series that make up the columns of the DataFramecan 
be accessed via dictionary-style indexing of the column name: 

 

In[19]: data['area'] 
Out[19]: California  423967 

Florida  170312 

Illinois  149995 
New York 141297 

Texas  695662 
Name: area, dtype: int64 

 

Equivalently, we can use attribute-style access with column names 
that are strings: 

In[20]: data.area 

Out[20]: California  423967 
Florida  170312 

Illinois  149995 

New York  141297 
Texas  695662 

Name: area, dtype: int64 

 
This attribute-style column access actually accesses the exact same 

object as the dictionary-style access 

 
In[21]: data.areais data['area'] 

Out[21]: True 

 
Though this is a useful shorthand, keep in mind that it does not work 

for all cases! 

Since, there is already a function called as POP(), used to remove 

a element in an array. 



121 

 

In[22]: data.popis data['pop'] 
Out[22]: False 

 
Like with the Series objects discussed earlier, this dictionary-style 

syntax can also be used to modify the object, in this case to add a new 
column: 

 

In[23]: data['density'] = data['pop'] / data['area'] 

Data # show pop/area value 

Out[23]:   

              area  pop    density 

California 423967  38332521  90.413926 

Florida   170312  19552860  114.806121 

Illinois   149995  12882135  85.883763 

New York   141297  19651127  139.076746 

Texas    695662  26448193  38.018740 

 
DataFrame as two-dimensional array 

DataFrame as an enhanced two dimensional array  

In[24]: data.values # from out 23 represent in float 

Out[24]:  

array([[ 4.23967000e+05, 3.83325210e+07, 9.04139261e+01], 
            [ 1.70312000e+05, 1.95528600e+07, 1.14806121e+02],  

            [ 1.49995000e+05, 1.28821350e+07, 8.58837628e+01],  

            [ 1.41297000e+05, 1.96511270e+07, 1.39076746e+02],  
            [ 6.95662000e+05, 2.64481930e+07, 3.80187404e+01]]) 

 

 
 
Matrix transpose 

 

In[25]: data.T 
Out[25]:  
                   California          Florida             Illinois               New York         Texas                 
area      4.239670e+05 1.703120e+05 1.499950e+05 1.412970e+05 6.956620e+05 
pop       3.833252e+07 1.955286e+07 1.288214e+07 1.965113e+07 2.644819e+07 
density 9.041393e+01 1.148061e+02 8.588376e+01 1.390767e+02 3.801874e+01 



122 

 

 

In[26]: data.values[0]  #access row 0 

 
Out[26]: array([ 4.23967000e+05, 3.83325210e+07, 9.04139261e+01])  

 

Passing a single “index” to a DataFrame accesses a column: 

In[27]: data['area']  

Out[27]: California 423967  

Florida 170312  
Illinois 149995  
New York 141297  
Texas 695662  

Name: area, dtype: int64 

 

Pandas again uses the loc, iloc, and ix indexers 

Example dataframe 

Out[23]:    

area  pop   density 

California 423967  38332521  90.413926 

Florida   170312  19552860 114.806121 

Illinois   149995  12882135  85.883763 

New York   141297  19651127  139.076746 

Texas    695662  26448193  38.018740 
 
In[28]: data.iloc[:3, :2] # row, column from out[23] it prints                                       

only 3 row and 2 columns 
 

 

 
OUT [28] 

 area  pop 

California  423967  38332521 
Florida   170312  19552860 

Illinois   149995  12882135 

 
In[29]: data.loc[:'Illinois', :'pop'] # cuts at illinois and pop 

Out[29]:   area  pop 



123 

 

California  423967  38332521 
Florida   170312  19552860 

Illinois   149995  12882135 

 
In[30]: data.ix[:3, :'pop'] # Cuts at 3 row and pop 

Out[30]:  

                  area         pop  
California 423967   38332521  

Florida      170312   19552860  

Illinois       149995   12882135 
 

In[31]: data.loc[data.density> 100, ['pop', 'density']]  

# prints values more than 100 in both pop and density. 
Out[31]:    pop            density  

Florida      19552860  114.806121  
New York 19651127  139.076746 

 

In[32]: data.iloc[0, 2] = 90  # assignment of value 90 at row 0            
and column 2 

           data  # prints the data 

Out[32]:   area  pop   density 
California 423967  38332521 90.0000000 #value changed 

Florida   170312  19552860  114.806121 

Illinois    149995 12882135 85.883763 
New York    141297  19651127  139.076746 

Texas    695662  26448193  38.018740 

 
 

 

Additional indexing conventions 

 

Example dataframe 

Out[23]:    

area  pop    density 

California 423967  38332521  90.413926 

Florida   170312  19552860  114.806121 



124 

 

Illinois   149995  12882135  85.883763 

New York   141297  19651127  139.076746 

Texas    695662  26448193  38.018740 

 
In[33]: data['Florida':'Illinois']  # from out 23 

Out[33]: area pop density 

Florida 170312 19552860 114.806121 
Illinois 149995 12882135 85.883763 

 

In[34]: data[1:3] 
Out[34]: area pop density 

Florida 170312 19552860 114.806121 

Illinois 149995 12882135 85.883763 
 

In[35]: data[data.density>100] # prints density value >100 

Out[35]: area pop density 
Florida  170312 19552860 114.806121 

New York 141297 19651127 139.076746 

 

Operating on Data in Pandas 

 

Ufuncs: Index Preservation 

Pandas is designed to work with NumPy, any NumPy ufunc will work 
on Pandas Series and DataFrame objects 

 

Let’s start by defining a simple Series andDataFrame 
 

In[1]: import pandas as pd 

import numpyas np 

In[2]: rng= np.random.RandomState(42) 

ser = pd.Series(rng.randint(0, 10, 4)) 

#random.randint(low, high=None, size=None, dtype=int) 
ser 

Out[2]: 0  6  #6 3 7 4 are produced from pd.series 

1  3 
    2 7 



125 

 

3  4 
dtype: int64 

In[3]: df= pd.DataFrame(rng.randint(0, 10, (3, 4)), # 0 to 10 values 3 

rows and 4 columns with names A B C D 
columns=['A', 'B', 'C', 'D']) 

df 

 
Out[3]: A B C D 

 0 6 9 2 6 

 1 7 4 3 7 
 2 7 2 5 4 

 

If we apply a NumPy ufunc (equivalent operators)on either of these 
objects, the result will be another Pandas object with the indices 

preserved 
In[4]: np.exp(ser) #exponential of ser 

Out[4]: 0  403.428793 # exponential value of 6 and so on 

    1  20.085537 
    2  1096.633158 

    3  54.598150 

dtype: float64 
 

UFuncs: Index Alignment 

Suppose we are combining two different data sources, and 

find only the top three US states by area and the top three US 

states by population: 

In[6]: area = pd.Series({'Alaska': 1723337, 'Texas': 695662, 
'California': 423967}, name='area') 

population = pd.Series({'California': 38332521,'Texas': 26448193, 

'New York': 19651127}, name='population') 
In[7]: population / area 

Out[7]: Alaska  NaN # Not a Number 

California  90.413926 
New York  NaN 

Texas  38.018740 

dtype: float64 



126 

 

The resulting array contains the union of indices of the two input 
arrays which we could determine using standard Python set arithmetic 

on these indices: 

In[8]: area.index| population.index 
Out[8]: Index(['Alaska', 'California', 'New York', 

'Texas'],dtype='object') 

Any item for which one or the other does not have an entry is marked 
with NaN, or “Not a Number,” which is how Pandas marks missing 

data 

Example: 
In[9]: A = pd.Series([2, 4, 6], index=[0, 1, 2])#values with index are added 

B = pd.Series([1, 3, 5], index=[1, 2, 3]) 

A + B 
Out[9]:  0 NaN 

1 5.0 
2 9.0 

3 NaN 

dtype: float64 
If using NaN values is not the desired behaviour, we can modify by 

calling A.add(B) is equivalent to calling A + B, 

 
In[10]: A.add(B, fill_value=0) 

 

Out[10]: 0  2.0 #  2 + Nan =2 
1  5.0 #  4+1 = 5 

2  9.0 #  6+3=9 

3  5.0  #  NaN+5 = 5 
dtype: float64 

 

Index alignment in DataFrame 

A similar type of alignment takes place for both columns and indices 

when performing operations on DataFrames 

In[11]: A = pd.DataFrame(rng.randint(0, 20, (2, 2)), #0 to 20 val 
columns=list('AB')) 

A 

Out[11]:       A  B 
0  111 



127 

 

1  5 1 

 

In[12]: B = pd.DataFrame(rng.randint(0, 10, (3, 3)), 

columns=list('BAC')) 
B 

 

Out[12]:      B   A   C 
      0   4 09 

      1   5 8 0 

      2   9   2   6 
 

In[13]: A + B 

Out[13]: A             B            C 
               0  1.0          15.0        NaN 

      1  13.0        6.0          NaN 
      2  NaNNaNNaN 

 

Here we’ll fill with the mean of all values in A (which we compute by 
first stacking the rows of A): 

In[14]: fill = A.stack().mean() # all values in A are stacked and 

added to find mean = 4.5 obtained from (1+5+11+1)/4 
 

A.add(B, fill_value=fill) 

A  B      C                        B   A   C 
0  1114.5           +     0   4 09 

1  5 14.5 1   5 8 0 

2  4.5    4.5   4.5                  2   9   2   6 

 

# A is added with B and mean value is added to missing values 

# Nan Values are filled with OUT[12] + 4.5 
# the values from out[11] are kept and 4.5 is added to  

Out[14]:      A       B          C 

      0 1.0    15.0     13.5 
      1 13.0  6.0         4.5 

      2 6.5    13.5      10.5 



128 

 

 
 
 

Ufuncs: Operations Between DataFrame and Series 

When you are performing operations between a DataFrame and a 

Series, the index and column alignment is similarly maintained. The 
operation is similar to operations between a two-dimensional and one-

dimensionalNumPy array. 

In[15]: A = rng.randint(10, size=(3, 4)) 
A 

Out[15]: array([[3, 8, 2, 4], 

[2, 6, 4, 8], 
[6, 1, 3, 8]]) 

In[16]: A - A[0] # Value of array is subtracted from row 0. 

 
Out[16]: array([[ 0, 0, 0, 0], 

[-1, -2, 2, 4], 

[ 3, -7, 1, 4]]) 
 

In Pandas, the convention similarly operates row-wise bydefault: 

In[17]: df= pd.DataFrame(A, columns=list('QRST')) 
df- df.iloc[0] # subtract df from row 0 of df 

Out[17]:   Q R  S   T 

0  0  0  0   0 
1  -1 -2 2  4 

2  3  -7 1  4 

 



129 

 

Handling Missing Data 

Difference between data found in many tutorials and data in the real 

world is that real-world data is rarely clean and homogeneous many 

interesting datasets will have some amount of data missing. To make 
matters even more complicated, different data sources may indicate 

missing data in different ways. 

 
how Pandas chooses to represent it, and demonstrate some built-in 

Pandas tools for handling missing data in Python. 

 
we’ll refer to missing data in general as null, NaN, or NA values. 

 

 

Trade-Offs in Missing Data Conventions 

A number of schemes have been developed to indicate the presence of 
missing data in a table or DataFrame. Generally, they revolve around 

one of two strategies: using a mask that globally indicates missing 

values, or choosing a sentinel value that indicatesa missing entry. 
 

Missing Data in Pandas 

1. None: Pythonic missing data 

In[1]: import numpyas np 

import pandas as pd 

In[2]: vals1 = np.array([1, None, 3, 4]) 
vals1 

Out[2]: array([1, None, 3, 4], dtype=object) # dtype is object due to 

None. 

 

In[3]: for dtypein ['object', 'int']: 

print("dtype =", dtype) 
 

Out: dtype = object 

dtype = int 

 
%timeitnp.arange(1E6, dtype=dtype).sum() 

print() 



130 

 

dtype = object 
10 loops, best of 3: 78.2 ms per loop 

dtype = int 

100 loops, best of 3: 3.06 ms per loop 
 

dtype=object means python objects. This is done at python level and 

has more overhead. 
The use of Python objects in an array also means that if you perform 

aggregations like sum() or min() across an array with a None value, 

you will generally get an error: 
In[4]: vals1.sum() 

TypeError Traceback (most recent call last) 

<ipython-input-4-749fd8ae6030> in <module>() 
----> 1 vals1.sum() 

 

NaN: Missing numerical data 

The other missing data representation, NaN (acronym for Not a 

Number), is different; it is a special floating-point valuerecognized by 
all systems that use the standard IEEE floating-point representation 

In[5]: vals2 = np.array([1, np.nan, 3, 4]) 

vals2.dtype 
Out[5]: dtype('float64') 

 

the result of arithmetic with NaNwill be another NaN: 
 

In[6]: 1 + np.nan 

Out[6]: nan 
In[7]: 0 * np.nan 

Out[7]: nan 

In[8]: vals2.sum(), vals2.min(), vals2.max() 
Out[8]: (nan, nan, nan) 

NumPy does provide some special aggregations that will ignore these 

missing values 
In[9]: np.nansum(vals2), np.nanmin(vals2), np.nanmax(vals2) 

Out[9]: (8.0, 1.0, 4.0) 

 

 



131 

 

NaN and None in Pandas 

In[10]: pd.Series([1, np.nan, 2, None]) 

Out[10]:  

0 1.0 
1 NaN 

2 2.0 

3 NaN 
dtype: float64 

Pandas automatically type-castswhen NA values are present. For 

example, if we set a value in an integer array tonp.nan, it will 
automatically be upcast to a floating-point type to accommodate the 

NA: 

In[11]: x = pd.Series(range(2), dtype=int) 
x 

Out[11]: 0 0 
1 1 

dtype: int64 

In[12]: x[0] = None 
x 

Out[12]: 0 NaN 

1 1.0 
dtype: float64 

Notice that in addition to casting the integer array to floating point, 

Pandas automatically converts the None to a NaN value. 

 
Operating on Null Values 

Pandas treats None and NaN as essentially interchangeable for 
indicating missing or null values. To facilitate this convention, there 

are several useful methods for detecting, removing, and replacing null 

values in Pandas data structures. 
isnull()Generate a Boolean mask indicating missing values 



132 

 

notnull()Opposite of isnull() 
dropna()Return a filtered version of the data 

fillna()Return a copy of the data with missing values filled or imputed 

 

Detecting null values 

Pandas data structures have two useful methods for detecting 

null data: isnull() and notnull(). Either one will return a Boolean mask 
over the data. For example: 

In[13]: data = pd.Series([1, np.nan, 'hello', None]) 

In[14]: data.isnull() 
Out[14]:  0 False 

1 True 

2 False 
3 True 

dtype: bool 
In[15]: data[data.notnull()] #Displays elements that are not null 

Out[15]: 0 1 

      2 hello 
dtype: object 

 

Dropping null values 

There are the convenience methods, dropna() (which removes 

NA values) and fillna() (which fills in NA values). 

In[16]: data.dropna() 
Out[16]: 0 1 

                2 hello 

dtype: object 
 

In[17]: df= pd.DataFrame([[1, np.nan, 2], 

[2, 3, 5], 
[np.nan, 4, 6]]) 

df 

 
Out[17]:          0     1      2 

0 1.0   NaN2 

1 2.0   3.0   5 
2 NaN 4.0   6 



133 

 

By default, dropna() will drop all rows in which any null value is 
present: 

In[18]: df.dropna() 

Out[18]:       0     1    2 
1 2.0  3.0  5 #dispalys row with no missing values 

you can drop NA values along a different axis; axis=1 drops all 

columns containing a null value: 
In[19]: df.dropna(axis='columns') 

Out[19]:       2 # Displays only column with no missing values. 

0 2 
1 5 

2 6 

In[20]: df[3] = np.nan # add column 3 to df. 
df 

Out[20]:         0       1     2     3 
0 1.0   NaN 2 NaN 

1 2.0   3.0   5 NaN 

2 NaN 4.0   6 NaN 
In[21]: df.dropna(axis='columns', how='all') 

Out[21]:          0     1    2 # drops all NaN column since (axis=col) 

0 1.0 NaN 2 
1 2.0 3.0   5 

2 NaN 4.0 6 

the thresh parameter lets you specify a minimum number of  

non-null values for the row/column to be kept: 

In[22]: df.dropna(axis='rows', thresh=3) 

Out[22]:          0   1    2  3 
1 2.0 3.0 5 NaN 

 

Filling null values 

Sometimes rather than dropping NA values, you’d rather replace them 

with a valid value. 

In[23]: data = pd.Series([1, np.nan, 2, None, 3], index=list('abcde')) 
data 

 

Out[23]:     
 



134 

 

a 1.0 
b NaN 

c 2.0 

d NaN 
e 3.0 

dtype: float64 

 
We can fill NA entries with a single value, such as zero: 

In[24]: data.fillna(0) 

 
Out[24]:    

a 1.0 # filled with 0 values 

b 0.0 
c 2.0 

d 0.0 
e 3.0 

dtype: float64 

 
We can specify a forward-fill to propagate the previous value forward: 

In[25]: # forward-fill 

data.fillna(method='ffill') 
 

Out[25]:   

a 1.0 # fills previous value 1 in NaN value 
b 1.0 

c 2.0 

d 2.0 
e 3.0 

dtype: float64 

 
we can specify a back-fill to propagate the next values backward 

In[26]: # back-fill 

data.fillna(method='bfill') 
 

Out[26]:    

a 1.0 # fills below value 2 in NaN value 
b 2.0 



135 

 

c 2.0 
d 3.0 

e 3.0 

dtype: float64 
 

For DataFrames, the options are similar, but we can also specify an 

axis along which the fills take place: 
In[27]: df 

 

Out[27]:  
0   1  2 3 

0 1.0  NaN 2 NaN 

1 2.0  3.0  5 NaN 
2 NaN 4.0  6 NaN 

In[28]: df.fillna(method='ffill', axis=1) #column wise fill from prev 
Out[28]:  

0  1  2  3 

0 1.0  1.0  2.0  2.0 
1 2.0  3.0  5.0  5.0 

2 NaN 4.0  6.0  6.0 

Notice that if a previous value is not available during a forward fill, 
the NA value remains. 

 

Hierarchical Indexing 

While Pandas does provide Panel and Panel4D objects that natively 

handle three-dimensional and four-dimensional data, a far more 

common pattern in practice is to make use of hierarchical indexing 
(also known as multi-indexing) to incorporate multiple index levels 

within a single index. 

creation of MultiIndex objects 

In[1]: import pandas as pd 

import numpyas np 

 

In[2]: index = [('California', 2000), ('California', 2010), 

('New York', 2000), ('New York', 2010), 

('Texas', 2000), ('Texas', 2010)] 
populations = [33871648, 37253956, 



136 

 

18976457, 19378102, 
20851820, 25145561] 

pop = pd.Series(populations, index=index)  

pop 
Out[2]:  (California, 2000) 33871648 

(California, 2010) 37253956 

(New York, 2000) 18976457 
(New York, 2010) 19378102 

(Texas, 2000) 20851820 

(Texas, 2010) 25145561 
dtype: int64 

you can straightforwardly index or slice the series based on this 

multiple index: 
In[3]: pop[('California', 2010):('Texas', 2000)] # remove item at a  

         given index 
Out[3]:  (California, 2010) 37253956 

(New York, 2000) 18976457 

(New York, 2010) 19378102 
(Texas, 2000) 20851820 

dtype: int64 

if you need to select all values from 2010, you’ll need to do some 
messy. 

 

In[4]: pop[[ifor iin pop.indexif i[1] == 2010]] 
# pop.index returns index of dataframe. 

Out[4]: (California, 2010) 37253956 

(New York, 2010) 19378102 
(Texas, 2010) 25145561 

dtype: int64 

 
This produces the desired result, but is not as clean (or as efficient for 

large datasets), So we go for multiindex 

 

The better way: Pandas MultiIndex 

We can create a multi-index from the tuples as follows 

In[5]: index = pd.MultiIndex.from_tuples(index) 
Index 



137 

 

 
Out[5]: MultiIndex(levels=[['California', 'New York', 'Texas'],  

[2000, 2010]],  

labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) 

 

 MultiIndex contains multiple levels of indexing 

 In this case, the state names and the years, as well as multiple 

labels for each data point which encode these levels. 

 reindex of series with MultiIndex shows the hierarchical 

representation of data 

In[6]: pop = pop.reindex(index) 
pop 

Out[6]: 0 California  0 2000  33871648 

             0                 1 2010  37253956 
1 New York 0 2000  18976457 

             1           1 2010  19378102 

2 Texas        0 2000  20851820 
             2 1 2010  25145561 

dtype: int64 
Blank entry indicates the same value as the line above it. 

In[7]: pop[:, 2010] #access data of 2010 

Out[7]: California 37253956  
    New York 19378102 

    Texas 25145561 

dtype: int64 
 

MultiIndex as extra dimension 

 we could easily have stored the same data using a simple 
DataFrame with index and column labels. The unstack() method will 

quickly convert a multiplyindexed Series into a conventionally 

indexed DataFrame 
 

In[8]: pop_df= pop.unstack() 

pop_df 
  



138 

 

Out[8]:    
2000  2010# Difference 

California  33871648  37253956 

New York   18976457  19378102 
Texas   20851820  25145561 

stack() method provides the opposite operation: 

In[9]: pop_df.stack() 
Out[9]:  

California  2000  33871648 

2010  37253956 
 New York  2000  18976457 

2010  19378102 

Texas  2000  20851820 
2010  25145561 

dtype: int64 
so why do we need multiple indexing? 

we were able to use multi-indexing to represent two-

dimensional data within a one-dimensional Series, we can also use it 
to represent data of three or more dimensions in a Series or 

DataFrame. 

Now we add another column with population under 18. 
In[10]:pop_df= pd.DataFrame({'total': pop, 

'under18': [9267089, 9284094, 

4687374, 4318033, 
5906301, 6879014]}) 

pop_df 

 
Out[10]:    total   under18 

California 2000 33871648  9267089 

2010 37253956  9284094 
New York 2000  18976457  4687374 

2010 19378102  4318033 

Texas  2000 20851820  5906301 
2010 25145561  6879014 

  



139 

 

The fraction of people under 18 year calculate by 
In[11]: f_u18 = pop_df['under18'] / pop_df['total'] 

f_u18.unstack() 

Out[11]:  2000   2010 
California  0.273594  0.249211 

New York  0.247010  0.222831 

Texas   0.283251  0.273568 
 

Methods of MultiIndex Creation 

 

you pass a dictionary with appropriate tuples as keys, Pandas will 

automaticallyrecognize this and use a MultiIndex by default: 

In[13]: data = {('California', 2000): 33871648,       # (tuple) - key 
('California', 2010): 37253956, 

('Texas', 2000): 20851820, 
('Texas', 2010): 25145561, 

('New York', 2000): 18976457, 

('New York', 2010): 19378102} 
pd.Series(data) 

 

Out[13]:  California  2000  33871648 
2010  37253956 

New York  2000  18976457 

2010  19378102 
Texas  2000  20851820 

2010  25145561 

dtype: int64 
 

Explicit MultiIndex constructors 

 
MultiIndex level names 



140 

 

 
MultiIndex for columns 

In a DataFrame, the rows and columns are completely symmetric, and 

just as the rows can have multiple levels of indices, the columns can 
have multiple levels as well 

 

 
 

Indexing and Slicing a MultiIndex 

 

Multiply indexed Series 

In[21]: pop 

Out[21]: state  year 



141 

 

California  2000  33871648 
2010  37253956 

New York  2000  18976457 

2010  19378102 
Texas  2000  20851820 

2010  25145561 

dtype: int64 
In[22]: pop['California', 2000] # prints California yr 2000 popul. 

Out[22]: 33871648 

In[23]: pop['California'] 
Out[23]: year   # prints available data on california 

2000 33871648 

2010 37253956 
dtype: int64 

 

Combining Datasets: Concat and Append 

 

In[1]: import pandas as pd 

import numpyas np 

def make_df(cols, ind): 

"""Quickly make a DataFrame""" 
data = {c: [str(c) + str(i) for iin ind] 

for c in cols} 

return pd.DataFrame(data, ind) 
# example DataFrame 

make_df('ABC', range(3)) 

Out[2]: A B C 
0 A0 B0 C0 

1 A1 B1 C1 

2 A2 B2 C2 

 



142 

 

 
Simple Concatenation with pd.concat 

pd.concat(), which has a similar syntax to np.concatenate. 

 
pd.concat(objs, axis=0, join='outer', join_axes=None, 

ignore_index=False,keys=None, levels=None, names=None, 

verify_integrity=False,copy=True) 
 

pd.concat() can be used for a simple concatenation of Series or 

DataFrameobjects,just as np.concatenate() can be used for simple 
concatenations of arrays: 

 

In[6]:  
ser1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3]) 

ser2 = pd.Series(['D', 'E', 'F'], index=[4, 5, 6]) 

pd.concat([ser1, ser2]) 
Out[6]: 1 A 

2 B 

3 C 
4 D 

5 E 

6 F 
dtype: object 

 



143 

 

By default, the concatenation takes place row-wise within the 
DataFrame (i.e., axis=0). Like np.concatenate, pd.concat allows 

specification of an axis along whichconcatenation will take place. 

We could have equivalently specified axis=1; here we’ve used the 
more intuitive axis='col'. 

 

 
Duplicate indices 

Difference between np.concatenate and pd.concat is that Pandas 

concatenation preserves indices, even if the result will have duplicate 
indices 

In[9]: x = make_df('AB', [0, 1]) 

y = make_df('AB', [2, 3]) 
y.index= x.index# make duplicate indices! 

print(x); print(y); print(pd.concat([x, y])) 

 
While this is valid within DataFrames, the outcome is often 
undesirable. pd.concat() gives us a few ways to handle it. 

 

Catching the repeats as an error. If you’d like to simply verify that 
the indices in theresult of pd.concat() do not overlap, you can specify 

the verify_integrity flag. 

With this set to True, the concatenation will raise an exception if there 
are duplicateindices. 

The following code is a enclosed in “try except block” 

In[10]: try: 
pd.concat([x, y], verify_integrity=True) 

except ValueErroras e: 



144 

 

print("ValueError:", e) 
ValueError: Indexes have overlapping values: [0, 1] 

 

Ignoring the index.Sometimes the index itself does not matter, and 
you would preferit to simply be ignored. You can specify this option 

using the ignore_indexflag. Withthis set to True, the concatenation 

will create a new integer index for the resultingSeries: 

 
Adding MultiIndex keys. Another alternative is to use the keys 

option to specify a labelfor the data sources; the result will be a 
hierarchically indexed series containing thedata: 

 
Concatenation with joins 

Concatenating different column datasets. 

In the simple examples we just looked at, we were mainly 

concatenating DataFrameswith shared column names. In practice, 

data from different sources might have different sets of column 
names, and pd.concat offers several options in this case. Considerthe 

concatenation of the following two DataFrames, which have some 

(but not all!) columns in common: 



145 

 

 
By default, the entries for which no data is available are filled with 

NA values. To change this, we can specify one of several options for 

the join and join_axesparametersof the concatenate function. By 
default, the join is a union of the input columns (join='outer'), but we 

can change this to an intersection of the columns usingjoin='inner': 

 
#Common Columns are added 

Another option is to directly specify the index of the remaining 
colums using thejoin_axes argument, which takes a list of index 

objects. Here we’ll specify that thereturned columns should be the 

same as those of the first input: 

 

 
# Only columns common to df5 are added 

The append() method 

rather than calling pd.concat([df1, df2]), you can simply 
calldf1.append(df2): 



146 

 

 
unlike the append() and extend() methods of Python lists, the 

append() method in Pandas does not modify the original object—

instead, it creates a new object with the combined data. 

Combining Datasets: Merge and Join 

One essential feature offered by Pandas is its high-performance, in-

memory join andmerge operations. The main interface for this is the 
pd.merge function. 

Relational Algebra 

The behaviour implemented in pd.merge() is a subset of what is 
known as relationalalgebra, which is a formal set of rules for 

manipulating relational data, and forms theconceptual foundation of 

operations available in most databases 

Categories of Joins 

The pd.merge() function implements a number of types of joins: the 

one-to-one, many-to-one, and many-to-many joins. 

One-to-one joins 

 

 
 



147 

 

The employee column is common hence the datas are merged. 

Many-to-one joins 

Many-to-one joins are joins in which one of the two key columns 

contains duplicateentries. 

 
Many-to-many joins 

If the key column in both the left and right array contains duplicates, 

thenthe result is a many-to-many merge 

 

 
 

 



148 

 

Specification of the Merge Key 

The on keywordexplicitly specify the name of the key column using 

the on keyword for joining 

 

 
The left_on and right_on keywords 

At times you may wish to merge two datasets with different column 

names. we may have a dataset in which the employee name is labeled 

as “name” ratherthan “employee”. 

 
You can drop a redundant column by drop() 

 
 



149 

 

The left_index and right_index keywords 

Sometimes, rather than merging on a column, you would instead like 

to merge on anindex. 

 

 
# Index with common names are merged and associated together. 

DataFrames implement the join() method, which performs a merge 
that defaults to joining on indices: 

 

 
  



150 

 

Specifying Set Arithmetic for Joins 

 

Mary is only merged since its in both df6 and 7 

 

 
Overlapping Column Names: The suffixes Keyword 

you may end up in a case where your two input DataFrames have 

conflictingcolumn names. 

 

 
 

Aggregation and Grouping 

 sum(), mean(), median(), min(), and max() 

Planets.head() # show from index 0 to 4 

Planets Data 



151 

 

 

Simple Aggregation in Pandas 

In[4]: rng= np.random.RandomState(42) 

 

  



152 

 

GroupBy: Split, Apply, Combine 

 

 

 

 

 



153 

 

Pivot Tables 

Titanic example 

 

 

 

Pivot Table Syntax 

 

Multilevel pivot tables 

 
Survival rate from 0 to 18 and 18 to 80 
  



154 

 

UNIT V 

Visualization with Matplotlib 

Color version available online at  

https://jakevdp.github.io/PythonDataScienceHandbook/ 

https://matplotlib.org/ 

General Matplotlib Tips 

In[1]: import matplotlib as mpl 

import matplotlib.pyplotas plt 

plt.styledirective to choose appropriate aesthetic styles for our figures 

In[2]: plt.style.use('classic') 

Plotting from a script 

import matplotlib.pyplotas plt 

import numpyas np 

x = np.linspace(0, 10, 100) #numpy.linspace(start, stop, num=50) 

Return evenly spaced numbers over a specified interval. 

Returns num evenly spaced samples, calculated over the interval [start, stop]. 

plt.plot(x, np.sin(x)) 

plt.plot(x, np.cos(x)) 

plt.show() 

plt.show() command should be used only once per 

Python session 

Plotting from an IPython shell 

IPython is built to work well with Matplotlib if you specify Matplotlib mode. To enable this 

mode, you can use the %matplotlib magic command after starting ipython: 

In [1]: %matplotlib #enables the drawing of matplotlib figures in the IPython 

environment 

Using matplotlib backend: TkAgg 

In [2]: import matplotlib.pyplotas plt 

Plotting from an IPython notebook  

The IPython notebook is a browser-based interactive data analysis tool that can combine 

narrative, code, graphics, HTML elements, and much more into a single executable 

document 

• %matplotlib notebook will lead to interactive plots embedded within the 

notebook 

• %matplotlib inline will lead to static images of your plot embedded in the 

Notebook 

In[3]: %matplotlib inline 

In[4]: import numpyas np 

https://jakevdp.github.io/PythonDataScienceHandbook/
https://matplotlib.org/


155 

 

x = np.linspace(0, 10, 100) 

fig = plt.figure() 

plt.plot(x, np.sin(x), '-') 

plt.plot(x, np.cos(x), '--'); 

 

Saving Figures to File 

In[5]: fig.savefig('my_figure.png') 

Save figure as png 

IN [6] ls -lh my_figure.png # shows figure properties, ls list file, -lh – human readable 

format,  

Out [6]: -rw-r--r-- 1 jakevdp staff 16K Aug 11 10:59 my_figure.png 

# read write,  

read only for group,  

read only for others,  

no. of link to file,  

name of file owner,  

Group associate with file, 

 size,  

last modified. 

In[7]: from IPython.displayimport Image 

Image('my_figure.png') 



156 

 

 

In[8]: fig.canvas.get_supported_filetypes() # list supported file format to save figures 

Out[8]: {'eps': 'Encapsulated Postscript', 

'jpeg': 'Joint Photographic Experts Group', 

'jpg': 'Joint Photographic Experts Group', 

'pdf': 'Portable Document Format', 

'pgf': 'PGF code for LaTeX', 

'png': 'Portable Network Graphics', 

'ps': 'Postscript', 

'raw': 'Raw RGBA bitmap', 

'rgba': 'Raw RGBA bitmap', 

'svg': 'Scalable Vector Graphics', 

'svgz': 'Scalable Vector Graphics', 

'tif': 'Tagged Image File Format', 

'tiff': 'Tagged Image File Format'} 

 

Simple Line Plots 

In[1]: %matplotlib inline 

import matplotlib.pyplotas plt 

plt.style.use('seaborn-whitegrid') 

import numpyas np 

In[2]: fig = plt.figure() #creates figure 

ax= plt.axes()  #creates axes 



157 

 

 

In[3]: fig = plt.figure() 

ax= plt.axes() 

x = np.linspace(0, 10, 1000)  

# start, stop, no. of points. 

# Return evenly spaced numbers over a specified interval. will also work with out 1000 

ax.plot(x, np.sin(x)); 

 

In[4]: plt.plot(x, np.sin(x)); 



158 

 

 

In[5]: plt.plot(x, np.sin(x)) 

plt.plot(x, np.cos(x)); 

 

Adjusting the Plot: Line Colors and Styles 

 

In[6]: 

plt.plot(x, np.sin(x - 0), color='blue') # specify color by name 

plt.plot(x, np.sin(x - 1), color='g') # short color code (rgbcmyk) 

plt.plot(x, np.sin(x - 2), color='0.75') # Grayscale between 0 and 1 

plt.plot(x, np.sin(x - 3), color='#FFDD44') # Hex code (RRGGBB from 00 to FF) 

plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB tuple, values 0 and 1 

plt.plot(x, np.sin(x - 5), color='chartreuse'); # all HTML color names supported 



159 

 

 

In[7]: plt.plot(x, x + 0, linestyle='solid') 

plt.plot(x, x + 1, linestyle='dashed') 

plt.plot(x, x + 2, linestyle='dashdot') 

plt.plot(x, x + 3, linestyle='dotted'); 

# For short, you can use the following codes: 

plt.plot(x, x + 4, linestyle='-') # solid 

plt.plot(x, x + 5, linestyle='--') # dashed 

plt.plot(x, x + 6, linestyle='-.') # dashdot 

plt.plot(x, x + 7, linestyle=':'); # dotted 

 

  



160 

 

In[8]: plt.plot(x, x + 0, '-g') # solid green 

plt.plot(x, x + 1, '--c') # dashed cyan 

plt.plot(x, x + 2, '-.k') # dashdot black 

plt.plot(x, x + 3, ':r'); # dotted red 

 

Adjusting the Plot: Axes Limits 

In[9]: plt.plot(x, np.sin(x)) 

plt.xlim(-1, 11) # plotted line is between -1 to 11 

plt.ylim(-1.5, 1.5); 

 

 

In[10]: plt.plot(x, np.sin(x)) 

plt.xlim(10, 0) 

plt.ylim(1.2, -1.2); 



161 

 

 

In[11]: plt.plot(x, np.sin(x)) 

plt.axis([-1, 11, -1.5, 1.5]); # x axis limit -1 to 11 

 

In[12]: plt.plot(x, np.sin(x)) 

plt.axis('tight'); # Frame is tight fitted 

 

In[13]: plt.plot(x, np.sin(x)) 



162 

 

plt.axis('equal'); 

 

Labeling Plots 

In[14]: plt.plot(x, np.sin(x)) 

plt.title("A Sine Curve") 

plt.xlabel("x") 

plt.ylabel("sin(x)"); 

 

 

 

In[15]:  

plt.plot(x, np.sin(x), '-g', label='sin(x)') # green label sin 

plt.plot(x, np.cos(x), ':b', label='cos(x)') # blue label cos 

plt.axis('equal') 

plt.legend(); 



163 

 

 

Simple Scatter Plots 

In[1]: %matplotlib inline 

import matplotlib.pyplotas plt 

plt.style.use('seaborn-whitegrid') 

import numpyas np 

In[2]: x = np.linspace(0, 10, 30) 

y = np.sin(x) 

plt.plot(x, y, 'o', color='black'); 

 

In[3]: rng= np.random.RandomState(0) # seed value, produces same random numbers again 

for marker in ['o', '.', ',', 'x', '+', 'v', '^', '<', '>', 's', 'd']: 

plt.plot(rng.rand(5), rng.rand(5), marker,label="marker='{0}'".format(marker)) 

plt.legend(numpoints=1) 

plt.xlim(0, 1.8); 



164 

 

 

In[4]: plt.plot(x, y, '-ok'); # line (-), circle marker (o), black (k) 

 

In[5]: plt.plot(x, y, '-p', color='gray',  # -p pentagon 

markersize=15, linewidth=4, 

markerfacecolor='white', 

markeredgecolor='gray', 

markeredgewidth=2) 

plt.ylim(-1.2, 1.2); 



165 

 

 

Scatter Plots with plt.scatter 

In[6]: plt.scatter(x, y, marker='o'); 

 

In[7]: rng= np.random.RandomState(0) 

x = rng.randn(100) # Normal distribution, generates an array of 100 random numbers 

y = rng.randn(100) 

colors= rng.rand(100) 

sizes = 1000 * rng.rand(100) 

plt.scatter(x, y, c=colors, s=sizes, alpha=0.3, cmap='viridis') # alpla - transparency and color 

map style 

plt.colorbar(); # show color scale 

 



166 

 

 

In[8]: from sklearn.datasetsimport load_iris 

iris = load_iris() 

features = iris.data.T   #Transpose 

plt.scatter(features[0], features[1], alpha=0.2,s=100*features[3], c=iris.target, cmap='viridis') 

# color of marker for each target variable – iris.target. 

plt.xlabel(iris.feature_names[0]) 

plt.ylabel(iris.feature_names[1]); 

 

Visualizing Errors 

Basic Errorbars 

In[1]: %matplotlib inline 

import matplotlib.pyplotas plt 

plt.style.use('seaborn-whitegrid') 

import numpyas np 

In[2]: x = np.linspace(0, 10, 50) 

# start, stop, no. of points. 

# Return evenly spaced numbers over a specified interval. 

dy= 0.8 

y = np.sin(x) + dy* np.random.randn(50) 



167 

 

plt.errorbar(x, y, yerr=dy, fmt='.k'); #xerr, yerr: These parameter contains an array.And the 

error array should have positive values. 

fmt: This parameter is an optional parameter and it contains the string value. 

K means data points will be black in color. 

 

In[3]: plt.errorbar(x, y, yerr=dy, fmt='o', color='black', ecolor='lightgray', elinewidth=3, 

capsize=0); 

# edge color, 

# Edge line width 

# Capsize length of the caps at the end of the error bars 

 
Continuous Errors 

In[4]: from sklearn.gaussian_processimport GaussianProcess 

# define the model and draw some data 

model = lambda x: x * np.sin(x) 

xdata= np.array([1, 3, 5, 6, 8]) 

ydata= model(xdata) 

# Compute the Gaussian process fit 

# cubic correlation function 

gp= GaussianProcess(corr='cubic', theta0=1e-2, -thetaL=1e 4, thetaU=1E-

1,random_start=100) 



168 

 

gp.fit(xdata[:, np.newaxis], ydata) 

xfit= np.linspace(0, 10, 1000) 

yfit, MSE = gp.predict(xfit[:, np.newaxis], eval_MSE=True) 

dyfit= 2 * np.sqrt(MSE) # 2*sigma ~ 95% confidence region 

In[5]: # Visualize the result 

plt.plot(xdata, ydata, 'or') 

plt.plot(xfit, yfit, '-', color='gray') 

plt.fill_between(xfit, yfit- dyfit, yfit+ dyfit, 

color='gray', alpha=0.2) 

plt.xlim(0, 10); 

 

 
Density and Contour Plots 

In[1]: %matplotlib inline 

import matplotlib.pyplotas plt 

plt.style.use('seaborn-white') 

import numpyas np 

Visualizing a Three-Dimensional Function 

In[2]: def f(x, y): 

return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x) 

In[3]: x = np.linspace(0, 5, 50) 

y = np.linspace(0, 5, 40) 

X, Y = np.meshgrid(x, y) #Return coordinate matrices from coordinate vectors 

Z = f(X, Y)  

In[4]: plt.contour(X, Y, Z, colors='black'); 



169 

 

 

In[5]: plt.contour(X, Y, Z, 20, cmap='RdGy');# 20 - contour levels 

 
In[6]: plt.contourf(X, Y, Z, 20, cmap='RdGy') # 20 - contour levels 

plt.colorbar(); 

 
In[7]: plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',cmap='RdGy')  

# converts color step to continuous.  plt.imshow() doesn’t accept an x and y grid, so you must 

manually specify theextent[xmin, xmax, ymin, ymax] 

plt.colorbar() 



170 

 

plt.axis(aspect='image'); #aspect – aspect ratio 

 
In[8]: contours = plt.contour(X, Y, Z, 3, colors='black') 

plt.clabel(contours, inline=True, fontsize=8) #contour labels are placed inline next to contor 

line 

plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower', cmap='RdGy', alpha=0.5) # extent x, y axis 

of displayed image 

plt.colorbar(); 

 
Histograms, Binnings, and Density 

In[1]: %matplotlib inline 

import numpyas np 

import matplotlib.pyplotas plt 

plt.style.use('seaborn-white') 

data = np.random.randn(1000) 

In[2]: plt.hist(data); 



171 

 

 
In[3]: plt.hist(data, bins=30, normed=True, alpha=0.5, histtype='stepfilled', color='steelblue', 

edgecolor='none'); # bins – bar, normed - histogram is normalized,  

histtype - generates a lineplot that is by default filled. 

histtype{'bar', 'barstacked', 'step', 'stepfilled'}, default: 'bar' 

 

 

 
In[4]: x1 = np.random.normal(0, 0.8, 1000) 

x2 = np.random.normal(-2, 1, 1000) 

x3 = np.random.normal(3, 2, 1000) 

kwargs= dict(histtype='stepfilled', alpha=0.3, normed=True, bins=40) 

plt.hist(x1, **kwargs) #**kwargs in function definitions in python is used to pass a 

keyworded, variable-length argument list 

plt.hist(x2, **kwargs) 

plt.hist(x3, **kwargs); 



172 

 

 
In[5]: counts, bin_edges= np.histogram(data, bins=5) # bin_edges – contain edges of bin 

print(counts) 

[ 12 190 468 301 29] 

Two-Dimensional Histograms and Binnings 

 Shows how much energy available in two dimensional bins 

 Bins are represented in both x and y axis 

In[6]: mean = [0, 0] 

cov= [[1, 1], [1, 2]] 

x, y = np.random.multivariate_normal(mean, cov, 10000).T#generate samples from 

multivariate normal distribution 

plt.hist2d: Two-dimensional histogram 

In[12]: plt.hist2d(x, y, bins=30, cmap='Blues') 

cb= plt.colorbar() 

cb.set_label('counts in bin') 

 
In[8]: counts, xedges, yedges= np.histogram2d(x, y, bins=30) # return values count,x,y 

plt.hexbin: Hexagonal binnings 

In[9]: plt.hexbin(x, y, gridsize=30, cmap='Blues') 

cb= plt.colorbar(label='count in bin') 



173 

 

 
Kernel density estimation. 

 Another common method of evaluating densities in multiple dimensions is kernel 

density estimation (KDE). 

 KDE can be thought of as a way to “smear out” the points in space and add up the 

result to obtain a smooth function. 

In[10]: from scipy.statsimport gaussian_kde 

# fit an array of size [Ndim, Nsamples] 

data = np.vstack([x, y]) 

kde= gaussian_kde(data) 

 

# evaluate on a regular grid 

xgrid= np.linspace(-3.5, 3.5, 40) 

ygrid= np.linspace(-6, 6, 40) 

Xgrid, Ygrid= np.meshgrid(xgrid, ygrid) 

Z = kde.evaluate(np.vstack([Xgrid.ravel(), Ygrid.ravel()])) # returns 1D array 

 

 

 

 

# Plot the result as an image 

plt.imshow(Z.reshape(Xgrid.shape),origin='lower', aspect='auto',extent=[-3.5, 3.5, -6, 

6],cmap='Blues') # reshapes 1D Z to 2D #aspect ratio # x and y axiss # color 

map 

cb= plt.colorbar() 

cb.set_label("density") 



174 

 

 
Customizing Plot Legends 

In[1]: import matplotlib.pyplotas plt 

plt.style.use('classic') 

In[2]: %matplotlib inline 

import numpyas np 

In[3]: x = np.linspace(0, 10, 1000) 

fig, ax= plt.subplots()  # create a figure and a set of subplots. 

ax.plot(x, np.sin(x), '-b', label='Sine') 

ax.plot(x, np.cos(x), '--r', label='Cosine') 

ax.axis('equal') 

leg = ax.legend(); # prints legend 

 
In[4]: ax.legend(loc='upper left', frameon=False) 

Fig 



175 

 

 
In[5]: ax.legend(frameon=False, loc='lower center', ncol=2) 

Fig 

 
In[6]: ax.legend(fancybox=True, framealpha=1, shadow=True, borderpad=1) 

# frame alpha – type of box frame 

Fig 

 
Choosing Elements for the Legend 

In[7]: y = np.sin(x[:, np.newaxis] + np.pi* np.arange(0, 2, 0.5)) # arrange return evenly 

spaced  values within a given interval 

lines = plt.plot(x, y) # plots multiple lines at once 



176 

 

# lines is a list of plt.Line2D instances 

plt.legend(lines[:2], ['first', 'second']); 

 
In[8]: plt.plot(x, y[:, 0], label='first') 

plt.plot(x, y[:, 1], label='second') 

plt.plot(x, y[:, 2:])  #x with y - all columns from the third column onward 

plt.legend(framealpha=1, frameon=True); 

 
Legend for Size of Points 

In[9]: import pandas as pd 

cities = pd.read_csv('data/california_cities.csv') 

# Extract the data we're interested in 

lat, lon= cities['latd'], cities['longd'] 

population, area = cities['population_total'], cities['area_total_km2'] 

# Scatter the points, using size and color but no label 

plt.scatter(lon, lat, label=None,c=np.log10(population), cmap='viridis', 

s=area, linewidth=0, alpha=0.5) 

plt.axis(aspect='equal') 

plt.xlabel('longitude') 

plt.ylabel('latitude') 

plt.colorbar(label='log$_{10}$(population)') 

plt.clim(3, 7) #Set the color limits of the current image. 3- lower, 7 – upper  

# Here we create a legend: 

# we'll plot empty lists with the desired size and label 



177 

 

for area in [100, 300, 500]: #For area in values of 100, 300, 500 

plt.scatter([], [], c='k', alpha=0.3, s=area, label=str(area) + ' km$^2$') 

plt.legend(scatterpoints=1, frameon=False, labelspacing=1, title='City Area') 

plt.title('California Cities: Area and Population'); 

 
Multiple Legends 

In[10]: fig, ax= plt.subplots() 

lines = [] 

styles = ['-', '--', '-.', ':'] 

x = np.linspace(0, 10, 1000) 

for iin range(4): 

lines += ax.plot(x, np.sin(x - i* np.pi/ 2),styles[i], color='black') 

ax.axis('equal') 

# specify the lines and labels of the first legend 

ax.legend(lines[:2], ['line A', 'line B'], 

loc='upper right', frameon=False) 

# Create the second legend and add the artist manually. 

from matplotlib.legendimport Legend 

leg = Legend(ax, lines[2:], ['line C', 'line D'], 

loc='lower right', frameon=False) 

ax.add_artist(leg); 

 
 



178 

 

Customizing Colorbars 

In[1]: import matplotlib.pyplotas plt 

plt.style.use('classic') 

In[2]: %matplotlib inline 

import numpyas np 

In[3]: x = np.linspace(0, 10, 1000) 

I = np.sin(x) * np.cos(x[:, np.newaxis]) 

plt.imshow(I) 

plt.colorbar(); 

 
Customizing Colorbars 

In[4]: plt.imshow(I, cmap='gray'); 

 
Choosing the colormap 

 Sequential colormaps 

These consist of one continuous sequence of colors (e.g., binary or viridis). 

 Divergent colormaps 

These usually contain two distinct colors, which show positive and negative deviations 

from a mean (e.g., RdBuor PuOr). 

 Qualitative colormaps 

These mix colors with no particular sequence (e.g., rainbow or jet). 

 

 

 



179 

 

frommatplotlib.colorsimportLinearSegmentedColormap 

 

defgrayscale_cmap(cmap): 

"""Return a grayscale version of the given colormap""" 

cmap=plt.cm.get_cmap(cmap) 

colors=cmap(np.arange(cmap.N)) 

 

# convert RGBA to perceived grayscale luminance 

# cf. http://alienryderflex.com/hsp.html 

RGB_weight= [0.299, 0.587, 0.114] 

    luminance =np.sqrt(np.dot(colors[:, :3] **2, RGB_weight)) 

colors[:, :3] = luminance[:, np.newaxis] #color store rgb values, 

 

returnLinearSegmentedColormap.from_list(cmap.name +"_gray", colors, cmap.N) 

 

 

defview_colormap(cmap): 

"""Plot a colormap with its grayscale equivalent""" 

cmap=plt.cm.get_cmap(cmap) 

colors=cmap(np.arange(cmap.N)) 

 

cmap=grayscale_cmap(cmap) 

    grayscale =cmap(np.arange(cmap.N)) 

 

    fig, ax=plt.subplots(2, figsize=(6, 2), #size of figure 

subplot_kw=dict(xticks=[], yticks=[]))# ticks are empty 

ax[0].imshow([colors], extent=[0, 10, 0, 1]) # extent image boundary 

ax[1].imshow([grayscale], extent=[0, 10, 0, 1]) # limits of x and y axis 

 

In[6]: view_colormap('jet') 

 
In[7]: view_colormap('viridis') 

 
In[8]: view_colormap('cubehelix') 

 



180 

 

In[9]: view_colormap('RdBu') 

 
 

Multiple Subplots 

 

In[1]: %matplotlib inline 

import matplotlib.pyplotas plt 

plt.style.use('seaborn-white') 

import numpyas np 

In[2]: ax1 = plt.axes() # standard axes 

ax2 = plt.axes([0.65, 0.65, 0.2, 0.2]) # position, size of subplot 

Create an inset axes at the top-right corner of another axes by setting the x and y 

position to 0.65 (that is, starting at 65% of the width and 65% of the height of the figure) and 

the x and y extents to 0.2 (that is, the size of the axes is 20% of the width and 20% of the 

height of the figure). 

 
In[3]: fig = plt.figure() 

ax1 = fig.add_axes([0.1, 0.5, 0.8, 0.4],  #position and size of the subplot within the 

figure. 

xticklabels=[], ylim=(-1.2, 1.2)) 

ax2 = fig.add_axes([0.1, 0.1, 0.8, 0.4], 

ylim=(-1.2, 1.2)) 

x = np.linspace(0, 10) 

ax1.plot(np.sin(x)) 

ax2.plot(np.cos(x)); 



181 

 

 
plt.subplot: Simple Grids of Subplots 

In[4]: for iin range(1, 7): 

plt.subplot(2, 3, i) 

plt.text(0.5, 0.5, str((2, 3, i)),fontsize=18, ha='center')# Text coordinate 

 

 
 

In[5]: fig = plt.figure() 

fig.subplots_adjust(hspace=0.4, wspace=0.4)#set spacing bw plots, height width 

spacing bw subplots 

for iin range(1, 7): 

ax= fig.add_subplot(2, 3, i) 

ax.text(0.5, 0.5, str((2, 3, i)), 

fontsize=18, ha='center') 



182 

 

 
plt.subplots: The Whole Grid in One Go 

In[6]: fig, ax= plt.subplots(2, 3, sharex='col', sharey='row') #row, column , share x, y axis 

scale 

 
In[7]: # axes are in a two-dimensional array, indexed by [row, col] 

for iin range(2): 

for j in range(3): 

ax[i, j].text(0.5, 0.5, str((i, j)), 

fontsize=18, ha='center') 

fig 



183 

 

 
 

plt.GridSpec: More Complicated Arrangements 

In[8]: grid = plt.GridSpec(2, 3, wspace=0.4, hspace=0.3) # 2 rows and 3 columns, width , 

height 

In[9]: plt.subplot(grid[0, 0]) 

plt.subplot(grid[0, 1:]) 

plt.subplot(grid[1, :2]) 

plt.subplot(grid[1, 2]); 

 
In[10]: # Create some normally distributed data 

mean = [0, 0] 

cov= [[1, 1], [1, 2]] 

x, y = np.random.multivariate_normal(mean, cov, 3000).T 

# Set up the axes with gridspec 

fig = plt.figure(figsize=(6, 6)) # width , height 

grid = plt.GridSpec(4, 4, hspace=0.2, wspace=0.2)#grid layout to place 

subplotswithin a figure 

main_ax= fig.add_subplot(grid[:-1, 1:]) 

y_hist= fig.add_subplot(grid[:-1, 0], xticklabels=[], sharey=main_ax) #left fig 

x_hist= fig.add_subplot(grid[-1, 1:], yticklabels=[], sharex=main_ax) # right fig 

# scatter points on the main axes 

main_ax.plot(x, y, 'ok', markersize=3, alpha=0.2) # center figure 

# histogram on the attached axes 



184 

 

x_hist.hist(x, 40, histtype='stepfilled',orientation='vertical', color='gray') 

x_hist.invert_yaxis() 

y_hist.hist(y, 40, histtype='stepfilled',orientation='horizontal', color='gray') 

y_hist.invert_xaxis() 

 
Text and Annotation 

In[1]: %matplotlib inline 

import matplotlib.pyplotas plt 

import matplotlib as mpl 

plt.style.use('seaborn-whitegrid') 

import numpyas np 

import pandas as pd 

In[2]: 

births = pd.read_csv('births.csv') 

quartiles = np.percentile(births['births'], [25, 50, 75]) 

mu, sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0]) 

births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)') 

#5 standard deviations from the mean 

births['day'] = births['day'].astype(int) 

births.index= pd.to_datetime(10000 * births.year+100 * births.month+births.day, 

format='%Y%m%d') # convert to date like object to date time objects 

births_by_date= births.pivot_table('births',[births.index.month, births.index.day]) 

births_by_date.index= [pd.datetime(2012, month, day) 

for (month, day) in births_by_date.index] 

In[3]: fig, ax= plt.subplots(figsize=(12, 4)) 

births_by_date.plot(ax=ax); 



185 

 

 
In[4]: fig, ax= plt.subplots(figsize=(12, 4)) 

births_by_date.plot(ax=ax) 

# Add labels to the plot 

style = dict(size=10, color='gray') 

ax.text('2012-1-1', 3950, "New Year's Day", **style) 

ax.text('2012-7-4', 4250, "Independence Day", ha='center', **style) 

ax.text('2012-9-4', 4850, "Labor Day", ha='center', **style) 

ax.text('2012-10-31', 4600, "Halloween", ha='right', **style) 

ax.text('2012-11-25', 4450, "Thanksgiving", ha='center', **style) 

ax.text('2012-12-25', 3850, "Christmas ", ha='right', **style) 

# Label the axes 

ax.set(title='USA births by day of year (1969-1988)',ylabel='average daily births') 

# Format the x axis with centered month labels 

ax.xaxis.set_major_locator(mpl.dates.MonthLocator())#locate major ticks at the 

beginning of each month 

ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymonthday=15)) 

ax.xaxis.set_major_formatter(plt.NullFormatter()) #set major tick labels of the x-axis 

to null 

ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h')); 

 
 

Transforms and Text Position 

 ax.transData 

Transform associated with data coordinates 

 ax.transAxes 

Transform associated with the axes (in units of axes dimensions) 



186 

 

 fig.transFigure 

Transform associated with the figure (in units of figure dimensions) 

In[5]: fig, ax= plt.subplots(facecolor='lightgray') 

ax.axis([0, 10, 0, 10]) 

# transform=ax.transData is the default, but we'll specify it anyway 

ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData) 

ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes) # look at axis 5 and 1 

ax.text(0.2, 0.2, ". Figure: (0.2, 0.2)", transform=fig.transFigure); # figure length, width 

 
Arrows and Annotation 

 

In[7]: %matplotlib inline 

fig, ax= plt.subplots() 

x = np.linspace(0, 20, 1000) 

ax.plot(x, np.cos(x)) 

ax.axis('equal') 

ax.annotate('local maximum', xy=(6.28, 1), xytext=(10, 4), 

arrowprops=dict(facecolor='black', shrink=0.05)) 

ax.annotate('local minimum', xy=(5 * np.pi, -1), xytext=(2, -6), 

arrowprops=dict(arrowstyle="->", 

connectionstyle="angle3,angleA=0,angleB=-90")); 

 
In[8]: 

fig, ax= plt.subplots(figsize=(12, 4)) 



187 

 

births_by_date.plot(ax=ax) 

# Add labels to the plot 

ax.annotate("New Year's Day", xy=('2012-1-1', 4100), xycoords='data', 

xytext=(50, -30), textcoords='offset points', #xytext position of text 

arrowprops=dict(arrowstyle="->",connectionstyle="arc3,rad=-0.2")) 

 
Customizing Ticks 

Major and Minor Ticks 

In[1]: %matplotlib inline 

import matplotlib.pyplotas plt 

plt.style.use('seaborn-whitegrid') 

import numpyas np 

In[2]: ax= plt.axes(xscale='log', yscale='log') 

 
Hiding Ticks or Labels 

In[5]: ax= plt.axes() 

ax.plot(np.random.rand(50)) 

ax.yaxis.set_major_locator(plt.NullLocator()) #supresses y axis 

ax.xaxis.set_major_formatter(plt.NullFormatter()) 



188 

 

 
Reducing or Increasing the Number of Ticks 

In[7]: fig, ax= plt.subplots(4, 4, sharex=True, sharey=True) 

 
The above figure has crowded labels 

In[8]: # For every axis, set the x and y major locator 

for axiin ax.flat: 

axi.xaxis.set_major_locator(plt.MaxNLocator(3)) #set the number of tics 

axi.yaxis.set_major_locator(plt.MaxNLocator(3)) 

fig 

 
 



189 

 

 

Fancy Tick Formats 

In[9]: # Plot a sine and cosine curve 

fig, ax= plt.subplots() 

x = np.linspace(0, 3 * np.pi, 1000) 

ax.plot(x, np.sin(x), lw=3, label='Sine') #lw line width 

ax.plot(x, np.cos(x), lw=3, label='Cosine') 

# Set up grid, legend, and limits 

ax.grid(True) 

ax.legend(frameon=False) 

ax.axis('equal') 

ax.set_xlim(0, 3 * np.pi); 

 
  



190 

 

Customizing Matplotlib: Configurations and Stylesheets 

Plot Customization by Hand 

First image shows a normal histogram to improve its quality  

We do  

In[3]: # use a gray background 

ax= plt.axes(axisbg='#E6E6E6') # light shade of grey hexadecimal color code 

ax.set_axisbelow(True) #Ticks and gridlines are below all Artists. 

# draw solid white grid lines 

plt.grid(color='w', linestyle='solid') 

# hide axis spines 

for spine in ax.spines.values(): #disable border lines 

spine.set_visible(False) 

# hide top and right ticks 

ax.xaxis.tick_bottom() # hide ticks on top and botom “-“ 

ax.yaxis.tick_left() 

# lighten ticks and labels 

ax.tick_params(colors='gray', direction='out') # tick colour and direction 

for tick in ax.get_xticklabels(): 

tick.set_color('gray') 

for tick in ax.get_yticklabels(): 

tick.set_color('gray') 

# control face and edge color of histogram 

ax.hist(x, edgecolor='#E6E6E6', color='#EE6666');  #bar edge colour and bar colour 

 



191 

 

 
Since, this is hard to do all the modifications each time its best to change the defaults 

Changing the Defaults: rcParams 

Each time matplotlib loads it defines a runtime configuration (rc) containing default style for 

each plot. plt.rc. 

In[4]: IPython_default= plt.rcParams.copy() 

In[5]: from matplotlib import cycler 

colors= cycler('color', 

['#EE6666', '#3388BB', '#9988DD', 

'#EECC55', '#88BB44', '#FFBBBB']) 

plt.rc('axes', facecolor='#E6E6E6', edgecolor='none', 

axisbelow=True, grid=True, prop_cycle=colors) 

plt.rc('grid', color='w', linestyle='solid') 

plt.rc('xtick', direction='out', color='gray') 

plt.rc('ytick', direction='out', color='gray') 

plt.rc('patch', edgecolor='#E6E6E6') 

plt.rc('lines', linewidth=2) 

In[6]: plt.hist(x); 

 
In[7]: for iin range(4): 

plt.plot(np.random.rand(10)) 



192 

 

 
Stylesheets 

In[8]: plt.style.available[:5] #names of the first five available Matplotlib styles 

Out[8]: ['fivethirtyeight', 

'seaborn-pastel', 

'seaborn-whitegrid', 

'ggplot', 

'grayscale'] 

The basic way to switch to a stylesheet is to call: 

plt.style.use('stylename') 

this will change the style for the rest of the session 

with plt.style.context('stylename'): 

make_a_plot() 

Let’s create a function that will make two basic types of plot: 

In[9]: def hist_and_lines(): 

np.random.seed(0) 

fig, ax= plt.subplots(1, 2, figsize=(11, 4)) 

ax[0].hist(np.random.randn(1000)) 

for iin range(3): 

ax[1].plot(np.random.rand(10)) 

ax[1].legend(['a', 'b', 'c'], loc='lower left') 

 

Default style 

In[10]: # reset rcParams 

plt.rcParams.update(IPython_default); 

Now let’s see how it looks (Figure 4-85): 

In[11]: hist_and_lines() 



193 

 

 
FiveThirtyEight style 

In[12]: with plt.style.context('fivethirtyeight'): 

hist_and_lines() 

 

 
 

Similarly we have ggplot, Bayesian Methods for Hackers style, Dark background, 

Grayscale, Seaborn style 

Three-Dimensional Plotting in Matplotlib 

In[1]: from mpl_toolkitsimport mplot3d 

In[2]: %matplotlib inline 

import numpyas np 

import matplotlib.pyplotas plt 

In[3]: fig = plt.figure() 

ax= plt.axes(projection='3d') 



194 

 

 

Three-Dimensional Points and Lines 

In[4]: ax= plt.axes(projection='3d') 

# Data for a three-dimensional line 

zline= np.linspace(0, 15, 1000) 

xline= np.sin(zline) 

yline= np.cos(zline) 

ax.plot3D(xline, yline, zline, 'gray') 

# Data for three-dimensional scattered points 

zdata= 15 * np.random.random(100) 

xdata= np.sin(zdata) + 0.1 * np.random.randn(100) 

ydata= np.cos(zdata) + 0.1 * np.random.randn(100) 

ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens'); #scatter points 

 

Geographic Data with Basemap 

$ conda install basemap 

In[1]: %matplotlib inline 

import numpyas np 

import matplotlib.pyplotas plt 

from mpl_toolkits.basemapimport Basemap 

In[2]: plt.figure(figsize=(8, 8)) 



195 

 

m = Basemap(projection='ortho', resolution=None, lat_0=50, lon_0=-100) 

m.bluemarble(scale=0.5); 

 

In[3]: fig = plt.figure(figsize=(8, 8)) 

m = Basemap(projection='lcc', resolution=None,width=8E6, height=8E6,lat_0=45, 

lon_0=-100,) 

m.etopo(scale=0.5, alpha=0.5) #satellite image 

# Map (long, lat) to (x, y) for plotting 

x, y = m(-122.3, 47.6) #lat and long 

plt.plot(x, y, 'ok', markersize=5) 

plt.text(x, y, ' Seattle', fontsize=12); 



196 

 

 

Drawing a Map Background 

• Physical boundaries and bodies of water 

drawcoastlines() 

Draw continental coast lines 

drawlsmask() 

Draw a mask between the land and sea, for use with projecting images on 

one or the other 

drawmapboundary() 

Draw the map boundary, including the fill color for oceans 

drawrivers() 

Draw rivers on the map 

fillcontinents() 

Fill the continents with a given color; optionally fill lakes with another color 

• Political boundaries 

drawcountries() 

Draw country boundaries 

drawstates() 

Draw US state boundaries 

drawcounties() 

Draw US county boundaries 

• Map features 

drawgreatcircle() 

Draw a great circle between two points 



197 

 

drawparallels() 

Draw lines of constant latitude 

drawmeridians() 

Draw lines of constant longitude 

drawmapscale() 

Draw a linear scale on the map 

• Whole-globe images 

bluemarble() 

Project NASA’s blue marble image onto the map 

shadedrelief() 

Project a shaded relief image onto the map 

etopo() 

Draw an etopo relief image onto the map 

warpimage() 

Project a user-provided image onto the map 

Plotting Data on Maps 

contour()/contourf() 

Draw contour lines or filled contours 

imshow() 

Draw an image 

pcolor()/pcolormesh() 

Draw a pseudocolor plot for irregular/regular meshes 

plot() 

Draw lines and/or markers 

scatter() 

Draw points with markers 

quiver() 

Draw vectors 

barbs() 

Draw wind barbs 

drawgreatcircle() 

Draw a great circle 

Example: California Cities 

In[10]: import pandas as pd 

cities = pd.read_csv('data/california_cities.csv') 

# Extract the data we're interested in 

lat= cities['latd'].values 

lon= cities['longd'].values 

population = cities['population_total'].values 

area = cities['area_total_km2'].values 

In[11]: # 1. Draw the map background 

fig = plt.figure(figsize=(8, 8)) 

m = Basemap(projection='lcc', resolution='h', #map projection, resolution high 

lat_0=37.5, lon_0=-119, 

width=1E6, height=1.2E6) 

m.shadedrelief() #draw shaded satellite image 



198 

 

m.drawcoastlines(color='gray') 

m.drawcountries(color='gray') 

m.drawstates(color='gray') 

# 2. scatter city data, with color reflecting population 

# and size reflecting area 

m.scatter(lon, lat, latlon=True,c=np.log10(population), s=area,cmap='Reds', 

alpha=0.5) 

# 3. create colorbar and legend 

plt.colorbar(label=r'$\log_{10}({\rm population})$') 

plt.clim(3, 7) #Set the color limits of the current image. 

# make legend with dummy points 

for a in [100, 300, 500]: 

plt.scatter([], [], c='k', alpha=0.5, s=a, 

label=str(a) + ' km$^2$') 

plt.legend(scatterpoints=1, frameon=False, 

labelspacing=1, loc='lower left'); 

 

Visualization with Seaborn 

Example of matplot lib classic plot. 

In[1]: import matplotlib.pyplotas plt 

plt.style.use('classic') 

%matplotlib inline 



199 

 

import numpyas np 

import pandas as pd 

In[2]: # Create some data 

rng= np.random.RandomState(0) 

x = np.linspace(0, 10, 500) 

y = np.cumsum(rng.randn(500, 6), 0) #cumulative sum of elements (partial sum of 

sequence) 

In[3]: # Plot the data with Matplotlib defaults 

plt.plot(x, y) 

plt.legend('ABCDEF', ncol=2, loc='upper left'); 

 

Seaborn image plot 

In[4]: import seaborn as sns 

sns.set() #Seaborn's default settings to your plots, 

In[5]: # same plotting code as above! 

plt.plot(x, y) 

plt.legend('ABCDEF', ncol=2, loc='upper left'); 

 


	Example of Variance in Finance
	 Accessing and modifying values in Pandas Series and DataFrameobjects
	 a Series object acts in many ways like a one-dimensional NumPy array, and in many ways like a standard Python dictionary
	 slicing may be the source of the most confusion
	 when you are slicing with an explicit index (i.e., data['a':'c']), the final index is included in the slice, while when you’re slicing with an implicit index (i.e., data[0:2]), the final index is excludedfrom the slice.
	data['a':'c']

