Theory of computation

Unit - I

Automate and Regulas Expression
Theory of computation (TOC)

* It is a branch of computer science which deals with has efficiently the problems are solved on the particular model of computation with the help of algorition
* It is classified into 3 types namely

1) automate theory and language
2) Computation theory
3) complexity

Automate then of language:
It deals with definition and population on various mathernatical model of computation.

Mathematical model's

* Turning machine
* finite Aerfomata.
* Push down Automate
main purpose of TOC

Develop mathematime model after computation tor real world computers

Eg
watch With timer

Basic
Basic Definition

1) symbol:

Eg: Human computer interaction -
Symbol is a character

$$
a \cdot b \cdot c \cdot \ldots=
$$

$$
0.1,2
$$

$$
+.-, x . \div
$$

Alphabet:

An Alphabet is a finite. nen-empty
Set of symbol and it is denoted by Σ
E.g

$$
\begin{aligned}
& \Sigma=\{0,1\} \text { - Set of binary alphabets } \\
& \Sigma=\{a, b c \cdots z\} \text { set of lowercase alphabets }
\end{aligned}
$$

$\underline{\text { Sting }} \frac{\text { word }}{\text { It is a finite set of sequence of symbol's }}$ Chosen from some alphabet's
E. 9
a) 01110110 is a string from $s=\{0,1\}$
b) a. $a a$, aaa are all string over the alphabet $s=\{a\}$

Empty Sting En Null sining: ϵ
An Empty string is the string from WHy
zero

$$
\text { occurence of symbol's }(E)
$$

Length of string:
Let w be the sung then the of the string is the number of symbols composing the sining. and it's denoted by $|w|$

Eg:

> 1) If $w=$ abed the $|w|=4$
> 2) If $w=010011000$ the $|w|=9$
3) $|\in|=0$

Symbols \rightarrow Alphabet \rightarrow String
Automate: Study of abstract computing device Why?
\rightarrow Complexity
\rightarrow To implement our brain function (finite automat

Application:

* Software designing

Limitations:

* It can recognised only simple larguago
* FA can be designed only ter decision making problems.
(1) Anite automation fir an on lott switch
- Digital system

(ii) Lexical aralysis sting "then"

(0) final state (s) accepted state

Finite Automate:

* introduction:
machine
Ft is a self, operating transforms

The finite Automation $F(A)$ is a mathematical model of a system. With discrete inputs and outputs a finite number af memory configuration called states and a set of transitions from state to state that occurs on input symbols from alphabet Σ.

Language.
A set of strings taken from an alphabet is called a language.

Deterministic Finite Automat
DFA

Non-Deterministic Finite

NDFA

Basic DFA
input pile

DFA is a language Recogniser that has
(i) An input file - containing an input sing
(ii) A finite control - a derlce that can be in a finite
(iii) A reader - a number of states
(IV) A program
peodiry device

Detorministic finite Automat ce

A deterministic finite automation (DFA) is a five- tuple $M=(Q, \Sigma, \delta$, q. F) Whore

Q - finite non-empty set of states

$$
\sum-\text { is a finite set of input symbols }
$$

qu- initial states (or) start states quote
F - Final state (os) accepting stator
$S: Q \times \sum \rightarrow Q$ transition function

Example

$$
\begin{aligned}
& Q=\left\{q 0 \cdot q^{1}\right. \\
& \Sigma=\{q \cdot b\}
\end{aligned}
$$

$90-\operatorname{Initias}$ state

$$
F=90 \quad \delta(80 a)=80
$$

$$
\delta(q \cdot b)=q_{1}
$$

Example 2

$$
\begin{aligned}
& Q=q_{0}, a_{1}, q_{3} \\
& \Sigma=\{a \cdot b\}
\end{aligned}
$$

qu - initial state
q_{2} - final state

$$
\delta\left(q_{0, a}\right)=q_{1}, \quad\left(q_{1}, b\right)=q_{1}
$$

Transition Table

A transition table is a conventional
tabular Representation of function like S that takes 2 arguments and Returns a values.

s	0	1
q_{0}	q_{12}	q_{0}
q_{1}	q_{1}	q_{1}
q_{2}	q_{2}	q_{1}

Transition Diagram:
transition diagram is a directed graph associated with the vertices of the graph
corresponding to the state of finite automate

Langrage acceptance by $F A$
A sting x is accepted by finite automate $M=(Q \cdot \leqq \cdot \delta \cdot 90 \cdot F)$ only if $\delta(q 0 . n)=P$ for some P in F

The langrage accepted by M which is denoted by L(M).

$$
L(M)=\left\{x / \delta\left(q_{0} \cdot x\right) \text { in } F\right\} \ldots
$$

Check whether the i / p sing 110901 as accepted by $F A(c)$ not

Sol

State 1/p	0	1
q_{0}	q_{2}	q_{1}
q_{1}	q_{3}	q_{0}
q_{21}	q_{0}	q_{3}
q_{3}	q_{1}	q_{2}

accepted state

$$
\begin{aligned}
& \delta\left(q_{0,110101)}\right. \\
& =\delta\left(\delta\left(q_{011}\right), 10101\right) \\
& =\delta\left(\delta\left(q_{111}\right) \cdot 0101\right) \\
& =\delta\left(\delta\left(q_{0,0}\right) \cdot 101\right) \\
& =\delta\left(\delta\left(q_{2}, 1\right), 01\right) \\
& =\delta\left(\delta\left(q_{3,0}\right), 1\right) \\
& =\delta \delta \delta\left(q_{1,1)}\right.
\end{aligned}
$$

$$
\therefore 110101 \text { is coteml }=\text { go }
$$

Deterministic Anite Automate (DFA)
The term deterministic peters to the fact. that on each i / p there is one and only state to which the automation can have transition from its current state.

DEA:

1) $4=$ set ot all strings that start with 0 $L=\{0,00,01,000,001,0110$.

(qa) 001

Dead state 1 trap state final state

101

(2)

Construct a DFA that accepts si of all over $\{0,1\}$ of length 2

$$
L=\{00,10,01,11\}
$$

.00

01

90

Non- Deterministic finite Automate

The Non- deterministic finite Automate (NFA) is defined by a five tuple $\left(Q, \Sigma, q_{0}, \delta, F\right)$

Where Q - finite $n(n$-empty set of states
Σ - Finite set of input alphabet
$q_{0} \in Q$ - start state, belongs to Q
$F \subseteq Q$ - set of final stater, subset of Q
δ - mapping function $Q \times \sum$ to 2^{Q}
(2^{Q} is Power set of Q)
Extended Transition tunction $(\bar{\delta})$
The function δ can be extended to a function $\bar{\delta}$ mapping $Q \times \Sigma$ to ${ }_{2}{ }^{Q}$ such that

$$
\hat{\delta}(q, t)=\{q\}
$$

$$
\hat{\delta}(q, w a)=\bigcup_{p \in \hat{S}(a \cdot w)} \delta(q, a) \quad \text { for each. } \omega \in \Sigma^{*}
$$

since $\vec{S}(q, a)=\delta(q, a)$ fir an input
symbol ' a ' we may use δ in place of $\hat{\delta}$
Also

$$
\delta\left(\left\{p_{1}, p_{2} \cdots, p_{n}\right\}, x\right)=\bigcup_{i=1}^{n} \delta\left(p_{i}, \lambda\right)
$$

Language of a NFA

A language is accepted by M if there exists some state in both F and $\delta(90, x)$
1.e

$$
L(A)=
$$

Example 1

Fer the NFA Shown, cheek whether The input sting 0100 is accepted cos not

The transition table δ is

	inputs	
	0	1
q_{10}	$\left\{q_{0} q_{11}\right\}$	$\left\{q_{2}\right\}$
q_{11}	q	$\left\{q_{11} q_{2}\right\}$
q_{2}	$\left\{q_{0,2} q_{2}\right\}$	$\left\{q_{1}\right\}$

$$
\begin{aligned}
& \text { Input string }=0100 \\
& \delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \delta\left(\nabla_{0,0100)}=\delta\left(\delta\left(q_{0,0}, 100\right)\right.\right. \\
& =\delta(\text { (00+QT) }) \text {, hoo }) \\
& S\left(q_{0}, 01\right)=S\left(S\left(q_{0}, 0\right), 1\right) \\
& =\delta\left(\left\{q_{0}, 0,\right\}, 1\right) \\
& =\delta\left(q_{0}, 1\right) \cup \delta(q, 1) \\
& =\left\{q_{2}\right\} \cup\left\{q_{1}, q_{2}\right\} \\
& =\left\{q_{1}, q_{2}\right\} \\
& \delta\left(q_{0}, 010\right)=\delta(\delta(90,01), 0) \\
& =\delta\left(\left\{q, q_{2}\right\}, 0\right) \\
& =\delta\left(q_{1}, 0\right) \cup \delta\left(q_{2}, 0\right) \\
& \Rightarrow\{\phi\} \cup\left\{q_{0}, q_{2}\right\}=\left\{q_{0}, q_{2}\right\} \\
& \delta\left(q_{0}, 0100\right)=\delta(8(90,010), 0) \\
& =\delta\left(\left(q_{0}, q_{2}\right\}, 1\right) \\
& =\delta\left(q_{0}, 1\right) \cup \delta\left(q_{2}, 1\right) \\
& =\quad q_{2} \cup\left\{q_{1}\right\} \\
& \delta\left(q_{0}, 0100\right) n F=\left\{q_{2}, q_{1}\right\} \cap\left\{q_{0}\right\} \neq \phi \text { nol acopkd }
\end{aligned}
$$

(2) Fer NFA cheek whether the Input string ∞ is accepted (co) not

So)

$$
\begin{aligned}
& \delta\left(q_{0}, 001\right)=\delta\left(\delta\left(q_{0}, 0\right), 01\right) \\
& =\delta\left(\left\{q_{0}, q_{1}\right\}, 0,1\right) \\
& =\delta\left(\delta\left(\left\{q_{0}, q_{1}\right\}, 0\right), 1\right) \\
& =\delta\left(\delta\left(q_{0}, 0\right) u \delta\left(q_{1}, 0\right), 1\right) \\
& =\delta\left(\left\{q_{0}, q_{1}\right) \cup\{\phi\}, 1\right) \\
& =\delta\left(\left\{q_{0}, q_{1}\right\}, 1\right) \\
& =\delta\left(q_{0}, 1\right) v \delta(q, 1) \\
& =\left\{q_{0}\right\} u\left\{q_{2}\right\}=\left\{q_{0}, q_{2}\right\}
\end{aligned}
$$

By Language of an NF.A

$$
L(A)=\left\{\omega / \hat{s}\left(q_{0}, \omega\right) \cap f \neq \phi\right\}
$$

$L(A)$ is the sot of $\operatorname{sining} \Delta \omega$ in \sum^{*} such that $\hat{\delta}\left(q_{0}, w\right)$ contains atloase 1 accepting state
(2) Design a NFA to accept stings containing the substing 0101
Sol

NA. $M=\left(Q, \Sigma, \delta, q_{0, F}\right)$ where

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\} \text { whore } \\
& \Sigma=\{0,1\} \\
& q_{0}=\left\{q_{0}\right\} \\
& F=\left\{a_{A}\right\} \\
& \text { Transition Table }
\end{aligned}
$$

Construct a NFA that accepts

$$
L=\{x \in\{a, b\} / x \text { ends with } a a b\}
$$

Sol

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, a_{2}, q_{3}\right\} \\
& \Sigma=\{a, b\} \\
& q_{0}=\left\{q_{0}\right\} \\
& F=\left\{q_{3}\right\}
\end{aligned}
$$

δ is defined by

$$
\begin{aligned}
& \delta\left(q_{0}, a\right)=\left\{q_{0}, q_{1}\right\} \\
& \delta\left(q_{0}, b\right)=\left\{q_{0}\right\} \\
& \delta\left(q_{1}, q\right)=\left\{q_{2}\right\} \\
& \delta\left(q_{2}, b\right)=\left\{q_{3}\right\}
\end{aligned}
$$

Q / Σ	a	b
q_{0}	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$
q_{1}	$\left\{q_{2}\right\}$	ϕ
q_{2}	ϕ	$\left\{q_{3}\right\}$
q_{3}	q	q

(3) Design a NFA ter $L=\left\{x \in\{a \cdot b\}^{A} / x\right.$ contains any

Sol

NA:

$$
\begin{aligned}
& M=\{Q \cdot \Sigma, \delta q 0, F\} \\
& Q=\{q 0, q,\} \quad F=\{q,\} \\
& q 0=\{q 0\} \quad\{a, b\} \\
& \delta \\
& \begin{array}{l|l|l|}
\hline \text { state } & \frac{a}{\text { np ut }} \\
\hline q 0 & \{q 0\} & \{q,\} \\
\hline q 1 & q & \{q,\} \\
\hline
\end{array}
\end{aligned}
$$ number of ais followed by at least one $b\}$

(1)

Exorcise

1) Construct a NFA over alphabet $\Sigma=\{a, b\}$ that accept string with sebring $a b$

(2) Censtruet a NFA that aceepts sing which tas 3id symbol 'b' trom pisht
Sol

) Construet the DFA equivalent to the NFA. $M=(\{90,0\},,\{0,1\}, \delta, q 0,\{0,1\}$ and δ is detive as

states	Inputs	
	0	1
q_{0}	$\left\{q_{0} 9_{1}\right)$	$\left\{q_{1}\right\}$
q_{1}	9	$\left\{q_{0}, a_{4}\right\}$

20

$$
D F A=M^{\prime}=\left(Q^{\prime},\{0,1\} . \delta^{\prime}\left[q_{0}\right], F^{\prime}\right\} \text { accepting }
$$

H(M).
$Q^{\prime}=2^{Q}$ (all subset of $\left.Q=\{90,2\},\right) \Rightarrow 2^{2}=t$

$$
\begin{aligned}
& =\left\{\phi,\left[q_{0}\right],\left[q_{1}\right],\left[q_{0}, q_{1}\right]\right\} \\
& \delta^{\prime}\left(\left[q_{0}\right], 0\right)=\left[q_{0}, q_{1}\right] \\
& \delta^{\prime}\left(\left[q_{0}\right], 1\right)=\left[q_{1}\right] \\
& \delta^{\prime}\left[\left[q_{1}\right] \neq 0\right)=\phi \\
& \delta^{\prime}\left[\left[q_{1}\right], 1\right]=\left[q_{0}, q_{1}\right] \\
& \delta^{\prime}\left(\left[q_{0}, q_{1}\right], 0\right)=\left[q_{0}, q_{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\} \\
& \delta(q 0,1)=\{q,\} \\
& \delta(q, 1)=\phi \\
& \delta(q, 1)=\left\{q_{0}, q_{1}\right\} \\
& \left.\delta\left(q 0, q_{1}\right\}, 0\right)= \\
& \delta\left(q_{0}, 0\right) \cup \delta\left(q_{11}, 0\right) \\
& =\left\{q_{0}, q_{1}\right\} \cup \phi=\left\{q_{0}, q_{1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\delta^{\prime}\left(\left[q_{0}, q_{1}\right], 1\right)=\left[q_{0}, q_{1}\right] & \left.\delta\left(\left\{q_{0}, q_{1}\right\},\right)\right] \\
& \left.\Rightarrow \delta \mid q_{0}, 1\right) \cup \delta\left(q_{111}\right) \\
= & \left\{q_{1}\right\} \cup\left\{q_{0}, q_{1}\right\} \\
= & \left\{q_{0}, q_{1}\right\}
\end{aligned}
$$

DFA transition table is

States	Inpuips	
$\left[q_{0}\right]$	0	1
$\left[q_{0}, q_{1}\right]$	$\left[q_{11}\right]$	
$\left[q_{11}\right]$	ϕ	$\left[q_{0}, q_{1}\right]$
$\left[q_{0}, q_{1}\right]$	$\left[q_{0,90]}\right.$	$\left[q_{\left.0, q_{1}\right]}\right.$

Equivalence of NFA and DFA
Theorem:
tet L be a Set accepted by NFA. Then There exist's a DFA that accept L.
proof:
Let $M=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be an NFA for language L Then define DFA $M^{\prime}=\left\{Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right\}$
The states of ' M^{\prime} are all the subset of M^{\prime}
The

$$
Q^{\prime}=2^{Q}
$$

$F^{\prime}=$ be the set of all the finch states in M.
The eloment in Q^{\prime} will be denoted by [a_{1}, a_{2} ai $]$ and the element in Q are denoted by $\left[q_{1}, q_{2}\right.$. on ${ }^{-}$. The $\left[q_{1} q_{2} \ldots q_{i}\right]$ will be assumed as one State in Q^{\prime} if on the NFA q_{0} is initial state it is denoted in DFA as $q_{0}^{\prime}=\left[q_{0}\right]$

Nowise define

$$
\begin{array}{r}
\delta^{\prime}\left(\left[q_{1}, q_{2} \ldots q_{i}\right] a\right)=\delta\left(q_{1}, a\right) \cup \\
\delta\left(q_{2} a\right) . \\
\\
\cup \delta\left(q_{i}, a\right)
\end{array}
$$

Equivalently

$$
\begin{aligned}
& \delta^{\prime}\left[\left[q_{1}, q_{2} \ldots q_{i}\right] \cdot a\right)=\left[p_{1}, p_{2} \ldots p_{j}\right] \\
& \delta^{\text {inf }}\left(\left\{q_{1}, q_{2} \ldots q_{i}\right\}, q\right)=\left\{p_{1}, p_{2} \ldots p_{j}\right\}
\end{aligned}
$$

Prot By Induction

Input sining x

$$
\begin{aligned}
& \delta^{\prime}\left(q_{0}^{\prime}, n\right)=\left[q_{1}, q_{2} \cdots q_{i}\right] \\
& \text { lIft } \\
& \delta\left(q_{0}, n\right)=\left\{q_{1}, q_{2}, q_{i 1}\right\}
\end{aligned}
$$

Basis Step:
The Result is trivial it string length is 0 1.e $\quad|x|=0$

Since $q_{0}^{\prime}=[90]$

Induction step:

If we assume that the hypothesis is true for the string of length m (co) las the m Then it x is a sting of length $m+1$. The function s' should be coritten as

$$
\delta^{\prime}\left(q_{0}^{\prime}, x a\right)=\delta^{\prime}\left(\delta^{\prime}(90, n), a\right)
$$

By the induction. hypothesis

$$
\begin{aligned}
& \delta^{\prime}\left(q_{0}^{\prime}, x\right)=\left[p_{1}, p_{2} \ldots p_{j}\right] \\
& 1 f f \\
& \delta\left(q_{0}, x\right)=\left\{p_{1} p_{2} \ldots p_{j}\right\}
\end{aligned}
$$

By definition of s^{\prime}

$$
\delta^{\prime}\left(\left[P_{1}, P_{2} \ldots P_{j}\right] \cdot a\right)=\left[r_{1}, r_{2} \ldots r_{x}\right]
$$

lit $\delta\left(\left\{p_{1}, p_{2} \ldots p_{j}, a\right)=\left\{r_{1}, r_{2} \ldots r k\right\}\right.$
Thus $\delta^{\prime}\left(q_{0}^{\prime}, n a\right)=\left[r_{1}, r_{2} \ldots r_{k}\right]$

$$
\begin{aligned}
& \text { if } \\
& \delta\left(q_{0}, n a\right)=\left\{r_{1}, r_{2} \ldots r_{k}\right\}
\end{aligned}
$$

Which establishes the inductive hypothesis
Thus $L(M)=L\left(M^{\prime}\right)$

Finite Automata with E Mories

If is possible in NFA that an NFA is allowed to make transition Simotanerisly, with ert Receiving an isp symbol. This move is called ϵ meres. This e. Represent any number of times

State	input			
q_{0}	q_{1}	9_{0}	ϕ	Q
	q_{2}	Q	q_{1}	ϕ
q_{2}	Q	ϕ	ϕ	q_{2}

Epstion (E) - closure
If state p is in E-closure (q), and tho is a transition from state p to state r labled El then r is in ε-closure (q). More precisely

If $S \backslash D$ the function of the $\varepsilon-N F A$ involved and p is in ε closure (q) then. ε-closure (q) also centring all the state in $\delta(p, \epsilon)$

Naturally Let ϵ-closure, where p is a set of states then
$U \in$ - closure (q)
(1) Find δ - closure

Find $\hat{\delta}\left(q_{0}, 01\right)$
Sol

$$
\begin{aligned}
& \varepsilon \text {-closure }\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}\right\} \\
& \delta \text { - closare }\left(q_{1}\right)=\left\{q_{1}, q_{2}\right\} \\
& \varepsilon-c \text { losure }\left(q_{2}\right)=\left\{q_{2}\right\} \\
& \left.\hat{\delta}\left(q_{0}, 01\right)=\varepsilon \text {-cosure } \delta\left(\hat{\delta}\left(q_{0}, 1\right), 1\right)\right) \\
& =\varepsilon \text {-closuse } \delta\left[\left\{\left(q_{0}, q_{1}, q_{0,5,1}\right) .\right.\right. \\
& =\delta-c \operatorname{cosine} \delta\left(\delta\{90+0\} \cup \delta\left(q_{1}, 0\right) \cup \delta\left(q_{20}, \ldots\right)\right. \\
& \left.=\varepsilon_{0}-\operatorname{cosure}() \delta(\{q 0, \phi, v \phi\}), 1\right) \\
& \left.\xi-c \text { losure }\left(8 \mid q_{0.1}\right)\right) \text {. } \\
& =\varepsilon_{-}-c \text { losure }(\varphi) \text {. } \\
& =\phi .
\end{aligned}
$$

Language of E-NFA

The language of an \&-NFA, ©

$$
M=\{\varphi, \Sigma, \delta, 90, F\}
$$

Theorem
If L is accepted by NFA with 8-Mansition Then L is accepted by an NFA without ε-marmite Sot Prot:

If bids aceepted by HFA
Let $M=(Q, \Sigma, \delta, 90, F)$ be an WFA with E-transition construct M^{\prime} which is NFA without ε - transition.

$$
\begin{aligned}
& M^{\prime}=\left(Q, \Sigma, \delta^{\prime}, q_{0}, F^{\prime}\right) \text { where } \\
& F^{\prime}= \begin{cases}F \cup\left\{v_{0}\right\} & \text { if } \varepsilon \text {-closure } q_{0} \text { contains a } \\
F \text { state of } F\end{cases}
\end{aligned}
$$

By induction.
$S^{\prime} \& \hat{S}$ are same $\delta \& \hat{\delta}$ are different

Let x be any sting

$$
\hat{\delta}\left(q_{0}, n\right)=\hat{\delta}\left(q_{0}, n\right)
$$

This statement is not true if $x=c$ because

$$
\delta^{\prime}\left(q_{0}, \epsilon\right)=\left\{q_{0}\right\} \quad \hat{S}\left(q_{0}, \epsilon\right)=\varepsilon-\text { closure (qu). }
$$

Basic step:
$|x|=1 \quad x$ is a symbol whose vale is a

$$
\left.\delta^{\prime}\left(q_{0}, a\right)=\hat{\delta}\left(q_{0}, a\right) \quad \text { (because by definition } \hat{\delta}\right)
$$

Induction step

Let $x=60$ when a is in E

$$
\begin{aligned}
& S^{\prime}\left(9_{10, w a}\right)=s^{\prime}\left(s^{\prime}\left(q_{0}, 0\right), a\right) \\
&=s^{\prime}\left(s^{\prime}\left(q_{0}, w\right), a\right) \\
&=s^{\prime}(r, a)[\text { Because by inductive } \\
&\text { hypothows }]
\end{aligned}
$$

Now wo must show that

$$
S^{\prime}(p, a)=\hat{\delta}\left(q_{0} \cdot 0 n\right)
$$

But

$$
\begin{aligned}
\delta^{\prime}(r, a) & =U_{q i n p} \delta^{\prime}(q, a) \\
& =\hat{q} \hat{S}^{\prime}(a \cdot a) \\
& \hat{\delta}(\hat{\delta}(a / 0 \cdot w) \cdot a)
\end{aligned}
$$

$$
\delta \quad q_{0} \cdot w a l
$$

$$
=\delta^{-1}\left(q_{0} \cdot x\right)
$$

Hence $\delta^{\prime}(q 0, x)=\hat{\delta}\left(q_{0}, x\right)$

Unit -II
Regular Expression and Language

Regular Languge:

Language that can be Represented using $f / A /$ Regex
Regen - short (powortue). \rightarrow patten matching.
$\Sigma=\{a\} \quad L=\{9.999,999 a \cdots\}$

Regex	Language
ε	$L(\varepsilon)=\{\epsilon\}$
ϕ	$L(\phi)=\{ \}$
q	$L(a)=\{a\}$

E. g

$$
\begin{aligned}
& L=\{a, a a \cdot a a a\}=a+a a+a a a \\
& L=\{a a, a b, b a \cdot b b\}=a a+a b+b a+b b
\end{aligned}
$$

operation in Rex
(1)

Union

$$
\begin{aligned}
L_{1} & =\{a, b\} \\
L_{2} & =\{c d, c c\} \\
L_{1} \cup L_{2} & =\{a, b, c d, c c\}
\end{aligned}
$$

Concatenation: (.)

$$
\begin{aligned}
L & =\{a, b\} \quad L 2=\{c d, c c\} \\
L \cdot M & =\{a c d, a c c, b c d, b c c\}
\end{aligned}
$$

Kloen closure: L^{*}

$$
\begin{array}{rlrl}
L & =\{a\}, & L^{0}=\{\in\} \quad L^{\prime}=\{a\} \\
L^{2} & =\{9 a\} & L^{3}=\{99 a\} \\
L^{*} & =\bigcup_{i=1}^{\infty} L^{\prime} & \\
L * & =\{\in, a .99,99 a
\end{array}
$$

(2) Example too kleen closure

$$
L=\{a, b\}
$$

Sol
Find $\quad L^{*}=? \quad L^{0}=\{ \}$

$$
\begin{aligned}
& L^{\prime}=\{a, b\}=L \\
& L^{2}=\{a a, a b, b a, b b\}
\end{aligned}
$$

$$
\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}
$$

$L^{3}=\{a a a, a a b$ aba $a b b, b a a, b a b$ ba, $b b b\}$

$$
L^{*}=L^{0} \cup L^{1} \cup L^{2} U L^{3}
$$

$L^{*}=\{\in, a, b, a a, a b, b a, b b, a a a, a a b, a b a$ $a b b, b a a, b a b, b b a, b b b\}$

Example 2

$$
\begin{aligned}
L & =\{a, a b\} \\
L^{0} & =\{a\}, \quad L=\{a, a b\} \quad L^{2}=\{, a a \cdot a a b, a b a, \\
L^{3} & =\{
\end{aligned}
$$

Difference between * and +

$$
\begin{aligned}
\Sigma & =\{a\} \\
\Sigma^{*} & =\Sigma^{0} u \varepsilon^{\prime} v \varepsilon^{2} u \\
& =\{\epsilon, a \cdot a a, 9 a a,\} \\
\Sigma^{+} & =\Sigma^{*}-\Sigma^{0} \\
& =\{a \cdot 9 a \cdot 99 a \cdots,\}
\end{aligned}
$$

Regex fer finite Language

Precedence of Regex

* - hight precedence
(4) Ending with $110=\left\{110,01110 \cdot y=-(0+1)^{*} 110\right.$
(5)

Having sinste b
$L=\{b, a b, a a b, a b a\}$
$a^{*} b a^{*}$
(6)

Hanig at loast one-b

$$
(a+b)^{*} b(a+b)^{A}
$$

(9)

Hering $b b b$ as substrita
$\{b b b$ abbbby

$$
(a+b) A \quad \bar{b} b b(a+b) A
$$

(8)

$$
\begin{aligned}
& \text { Ending with } a b \\
& (a+b)^{*}(a b) .
\end{aligned}
$$

Begining with ba $/$ or t

$$
b a(a+b)^{*}
$$

Gentaining a

$$
a(a+b) *
$$

Begining
star $\&$ end dith different symbol.

$$
a(a+b)^{*} b+b(a+b) * a
$$

(1) No Incoming Edge Fer Initial stete

(2) ony cne fince state must be present

Conversion of Regular Expression to NFA with \in transition (Thompsons) construction

Basis:

1) $R E=\epsilon$

Start $O \in(\sqrt{0}$
(2) $R E=\phi$

(3) $R E=a \quad \forall a E \varepsilon \Rightarrow a=\{a\}$

Start (90) $a \rightarrow$ E-NFA for a

Intooduction:

$$
R E=\gamma+s
$$

presedenco

1) ($)$
(2) 4
(3) Cencatiration
$R E=\gamma s$
(4) $+\left(\cos ^{1}\right)$

(1) censruct the E NFA fer the given regular Expression using Thompson's construction

$$
(a+b) * \cdot a b
$$

Sol
Step 1

Step $2 b$
a

Step 3:

- conrent the R.E to E-NFA

1) $0+1$

So

$(0+1)$
(2)

01

(cr)
(90) 0 (a1) \rightarrow (92) $\xrightarrow{\longrightarrow}$ (913)
(3)

1*

(5)
$(0+1) 01$

Arden's Theorem
(1) $P \& Q$ be two Regular exprosicn over Σ If P dies not contain \in, then the Equation in \mathbb{R}

$$
R=Q+R P \text { has a solution (i,e) } R=Q P^{*}
$$

Construct Regular expression to the gixen FA lasing Adars Theorem).

Step 1:
(1) check whether FA does not have ϵ-mover
(ii) It has only one start state

Step 2:
Incoming of q_{1} as

$$
\begin{align*}
& q_{1}=q_{000}+q_{03}+\epsilon \\
& q_{2}=q_{1.1}+q_{201}+q_{3.1} \tag{2}\\
& q_{3}=q_{2.0} \tag{3}
\end{align*}
$$

(3) in (2)

$$
\begin{aligned}
& q_{2}=q_{111}+q_{2.1}+v_{2.01} \\
& q_{2}=q_{1.1}+q_{22}(1+012 \rightarrow R=Q+R P \\
& \begin{array}{l}
Q=q_{1.1} \\
R=q_{2}
\end{array}{ }^{\text {we this }} \quad V
\end{aligned}
$$

$$
q_{2}=q_{11} 1\left(1+0_{1}\right)^{r}=(4)
$$

Now

$$
\begin{equation*}
q_{11}=q_{1} \cdot 0+q_{13} \cdot 0+\epsilon \tag{1}
\end{equation*}
$$

sub (3) in (1)

$$
q_{1}=q_{11} \cdot 0+q_{22} \cdot 00+\epsilon \text { (5) }
$$

sub (4) in (5)

$$
\begin{array}{ll}
q_{11}=q_{11} \cdot 0+q_{1.1}(1+01){ }^{* 0+\epsilon} & \text { Asain apply ar } \\
\frac{q_{1}}{R}=\frac{q_{1}}{R}\left(0+1(1+01)^{*} 00\right)+\frac{\epsilon}{a} & R=Q+R p \\
p & \\
q_{1} & =\left(0+1(1+01)^{*} 00\right)^{*}
\end{array}
$$

Again apply arden ther

As a_{1} is the only tinal state, the Regular
Exprossicn cemesponding to siven $F A$ is

$$
R E=\left(0+1(1+01)^{*} 00\right)^{*}
$$

(1) construct a DFA with Reduced state equivdert to the Regular expression $\quad R \cdot E=10+(0+11) 0$:
50)

Step 1 (NFA with E-transitions)
(i) The cultomaton for 10

(ii)

$$
0+11
$$

(iii). The automate tor o*

(iv) The automate tor o*।

(10 The automate tor $(0+11)$ ot 1

(vi) The automate for $10+(0+11) 0^{* 1}$

Step
NFA without ϵ - moves
(1)

(ii)

(iii)

(10)

(v)

Step 3:
Transition Table of NFA

state	inputs	
qu		
q_{1}	q_{3}	$\left[q_{1}, q_{2}\right]$
q_{1}	q_{1}	ϕ
q_{2}	ϕ	q_{3}
q_{4}	q_{3}	q_{4}
	ϕ	ϕ

Transition	Hade ter	DEA
state	0	1
$\left[q_{0}\right]$	q_{3}	$\left[q_{1} q_{2}\right]$
q_{1}	q_{1}	ϕ
q_{2}	q	q_{3}
q_{33}	q_{3}	q_{1}
$\left[q_{1} q_{4}\right.$	q_{4}	q_{4}

State

$$
a_{3}
$$

$\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$
Q/f
[al a_{2}]
ars

Transition Dlagram of DfA

Proving Languages Not to be Regular (using Fum:

* Plumping lemma is used to prove that language is not Regular
* It cannot be used to prove that a language is Regular
* Let ' L ' be a Regular Language then there elis: a constant ' n ' that to evens string ω is L

$$
|\omega| \geq n .
$$

* we can break ω into three strings $\omega=$ byz such that
(1) $|y|>0 \quad$ (cs) $y \neq \epsilon$
(ii) $|x y| \leq n$.
(iii) to all $k \geq 0$ the sting $x y^{k} z$ is also in L 。

Example 1
$L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$ is not Regular using pumping Lemma.
$L=\{\epsilon, a b, a a b b, a a a b b b, a a a a b b b b \ldots$ 而
$\omega=$ aaabbb $\quad n=$ string length what ever you

$$
|\omega|=6 \geq 0 \quad \Rightarrow|\omega| \geq 6 \quad 6 \geq 6 \text { true }
$$

Divide the sting into three parts $x, y z$

$$
\begin{array}{ll}
\omega=\frac{a a}{x} \frac{a b b b}{y} \frac{b}{z} & x=a a \\
y=a b \\
z=b b
\end{array}, \begin{aligned}
& \\
& |y|=a b
\end{aligned}
$$

(1) $|y|>0$ $|a b|>0$ 2>0 sting length two true
(ii)

$$
\begin{array}{lll}
|x y| \leq n & x=9 a & y=a b \quad n=6 \\
|a a a b| \leqslant 6 & 4 \leqslant 6 & a 9 a b=4
\end{array}
$$

(iii)

$$
\begin{aligned}
& x y^{k} z \quad k \geq 0 \\
& x=a a \quad y=a b \quad z=b b \\
& x y^{k} z=\quad k=0 \\
& a a(a b)^{0}(b b 2 \\
& a a b b \in L \quad \text { True }
\end{aligned}
$$

$$
\begin{aligned}
& x y^{k} z, k=1 \\
& \Rightarrow 9 a(a b)^{\prime} b b
\end{aligned}
$$

Gaabbb th True string belongs to language

$$
\Rightarrow x y^{k} z \quad k=9
$$

$\Rightarrow a a(a b)^{2} b b \Rightarrow a a a b a b b b \& L \quad$ false
This is not valid string

$$
\therefore a^{n} b^{D} \text { is not Regular Language. }
$$

16/9/2020
Unit-III Content Tree Grammar and Languages Grammar:

$$
G=(V, T, S, P)
$$

Where $V=$ set of variables / Non-terminal symbols
$T=$ set of terminal symbols
$S=$ start symbol (S)
$P=$ Production rule for $T / N T$ symbols
Production Rule $=a \rightarrow \infty(\because \underbrace{a, \alpha}$ (string) VUT)
Eg: $\left.C_{T}=\frac{(\{S, A, B\}}{v}, \frac{\{a, b\}}{}, S,\{S \rightarrow A, B, A \rightarrow a, B \rightarrow b\}\right)$
grammar

Right linear grammar
Production on Right side
left linear grammar
Production on left side

$$
\begin{aligned}
& A \rightarrow X B \\
& A \rightarrow X
\end{aligned}
$$

$A, B \rightarrow$ terminal symbols
x-Nen-derrinal symbol

$$
A \rightarrow B X
$$

$$
A \rightarrow x
$$

eg:
$s \rightarrow a b s / b \rightarrow$ Right linear

$$
\begin{array}{c|c}
s \rightarrow a b s & s \rightarrow s b b \\
\rightarrow a b b & \rightarrow \underline{b} b b
\end{array}
$$

$s \rightarrow$ sbb/b \rightarrow Reft linear
Derivation
set of all string
grammar
Language
1)

$$
G=(\{S, A\},\{a, b\}, S,\{S \rightarrow a A b, a A \rightarrow a a A b, A \rightarrow e\})
$$

$S \rightarrow a A b \quad B Y O A \rightarrow a a A b$
$\rightarrow a a A b b$
$\rightarrow a a a A b b b \quad B y A \rightarrow e$
\rightarrow aaaEbbb
$\rightarrow a a a b b b$
2)

$$
\begin{aligned}
S \rightarrow & (\{S, A, B\},\{a, b\}, S,\{S \rightarrow A B, A \rightarrow a, B \rightarrow b\}) \\
S & \rightarrow A B \quad B y A \rightarrow a \\
& \rightarrow a B=B y B \rightarrow b \\
& \rightarrow a b \quad \text { B }
\end{aligned}
$$

3) $(\{S, A, B\},\{a, b\}, S,\{S \rightarrow A B, A \rightarrow a A / a, B \rightarrow b B / b\})$

$$
\begin{aligned}
& S \rightarrow A B \\
& S \rightarrow A B \\
& \rightarrow a B \quad(b y A \rightarrow a) \\
& \rightarrow a b \quad(b y \quad B \rightarrow b) \\
& S \rightarrow A B \\
& \rightarrow a A B(A \rightarrow a A) \\
& \rightarrow a a b \quad(A \rightarrow a) \\
& \rightarrow a a b \quad(B \rightarrow b) \\
& \rightarrow a^{2} b \\
& \rightarrow a A B \text { (lb } A \rightarrow a A \text {) } \\
& \rightarrow a A b B \quad(B y B \rightarrow b B) \\
& \rightarrow a a b B \quad(B y A \rightarrow a) \\
& \rightarrow a a b b \quad(B y B \rightarrow b) \\
& S \rightarrow A B \\
& \rightarrow A b B(b y B \rightarrow b B) \\
& \rightarrow a b B \quad(b y A \rightarrow a) \\
& \rightarrow a b b(b y B \rightarrow b)) \\
& \rightarrow a b^{2} \\
& \alpha(G)=\left\{a b, a^{2} b^{2}, a^{2} b, a b_{c}^{2} \cdot\right\} \\
& =\left\{a^{m} b^{n} / m \geqslant 0 a n \geqslant 0\right\}
\end{aligned}
$$

Content True frammar

$$
G=\{v, T, P, s\}
$$

Eg:- Language of Palindrome $\rightarrow L_{\text {pal }}$

$$
\omega=\omega^{R}
$$

eg: $0110,11011,101$.
Basis: $\epsilon, 0,1$
Induction: ω eg: $0 \omega, 1 \omega 1$.

Eg: Palindrome rules

1. $P \rightarrow \epsilon$
2. $P \rightarrow 0$
3. $P \rightarrow 1$
4. $P \rightarrow$ ONO
5. $P \rightarrow|\omega|$

Contest free Grammar example:

1) $a^{n} b^{n}$ (n should be equal for both a and)

$$
G=\{(S, A),(a, b)(s \rightarrow a A b, A \rightarrow a A b \mid E)\}
$$

$S \rightarrow a A b$
$\rightarrow a a A b b$ (by $A \rightarrow a A b)$
$\rightarrow a a a A b b b \quad(b y A \rightarrow a A b)$
$\rightarrow a c a \in b b b \quad(b y A \rightarrow \epsilon)$
$\rightarrow a a a b b b$
$\rightarrow a^{3} b^{3}$.
$L(G)=\left\{a^{n} b^{n} / n>0\right\}$.
Parse true
\rightarrow ordered root true
\rightarrow semantic information of strings derived from CFC Y

1) $G_{1}=\{V, T, P, q\}$ where $S \rightarrow O B, A \rightarrow|A A| \in, B \rightarrow O A A$

Rules:
Root Vertex: start symbol
Vartixa : Nen-turminal symbol
leaves: Labelled dey terminal symbol.

2) $G=\{V, T, P, S\}$ where $S \rightarrow a A S / a S S / \in, A \rightarrow S b A / b a$.

heft durioation. true

Right Derivation tree

Ambiguous grammar
two / more derivation true
\rightarrow string ω
Eg: 2 left derivation tree

1) $G=\{\{s\},\{a+b, t, *\}, p, s\}$ where P consists of $s \rightarrow s+s / s * s\langle a / b$ string $a+a * b$.

$$
\begin{array}{rlrl}
S \rightarrow s+s & \rightarrow s+s * s & (b y s \rightarrow s * s) & \\
& \rightarrow s * s \\
& \rightarrow a+a * s(b y s \rightarrow q) & & \rightarrow a+a * s \\
& \rightarrow a+a * b(b y s \rightarrow b) & & \rightarrow a+a * b \\
& & (b y s \rightarrow a) \\
& & & \\
& & & \\
& & \\
& \rightarrow s \rightarrow b)
\end{array}
$$

$19 \mid 2220$
Push dover autemata:
A PDA is a way to implement a context free grammar in a similar bay due design finite automata for regular grammar.

* It is more pocererful than FSM.
* FSM has very limited memory but PDA has more memory
* FDA = finite stale machine + A stack.

Push-A new element is added to the
stack top of stack
POP - The top element of the stack is read + removed.

stark

A PDA has 3 components

1. An ip tape
2. A finite control unit
3. A stack with infinite size.

A PDA is defined by 7 tupis as show below

$$
P=\left(Q, \varepsilon, \Gamma, \delta, q_{0}, z_{0}, F\right)
$$

Where,
$Q=A$ finite set of stalls
$\Sigma=A$ finite vet of input symbols
$\Gamma=$ A finite stack alphabet
$\delta=$ The transition function.
$q_{0}=$ start stat
$z_{0}=$ start stack symbol
$F=$ set of final / accepting states
δ takes as argument a triple $\delta(q, a, x)$ there
(i) q is a state in Q.
(ii) a is lither as ip symbol in ε or $a=\epsilon$.
(iii) x is a stack symbol, ie is a member of F.

The O / P of δ is a finite set of pairs (D, V)
Where:

* P is a new state
* Y is a string of stack symbols that replaces xat the top of the stack.
Eg: If $y=\epsilon$ then stack is popped.
If $y=x$ then the stack is unchanged.
If $y=y z$ then x is replaced by z and y is pushed onto the stack.

Finite stale machine
limited memory

PD

$$
\text { (A) } \xrightarrow{a, b \rightarrow c}(B)
$$

expanded memory.

symbol pushed onto the stack
input
symbol $a=\epsilon$
$\epsilon \rightarrow$ stack \rightarrow it is neither read or pepped \rightarrow stack \rightarrow Nothing is pushed.
Eg: Construct a PDA that vacupas (aOL)

$$
L=\left\{\left.a^{n}\right|^{n} \mid n \geq 0\right\}
$$

$$
0, \epsilon \rightarrow 0 \quad 1,0 \rightarrow \epsilon
$$

D/2020
Equivalence of $C F G$ and PDA
Theorem: A language is context free if some push down automata recognizes it.
Proof:
(1) Given CFG, show how to construct a PDA that recognizes it.
(2) Given a PDA, show how to construct a CFG that recognizes the same language.
liven a grammar

$$
\begin{aligned}
& S \rightarrow B S \mid A \\
& A \rightarrow O A \mid E \\
& B \rightarrow B B \mid 2 \text { Find or lowild a PDA }
\end{aligned}
$$

Left most derivation:

$$
\begin{aligned}
& \rightarrow S \\
& \rightarrow B S \\
& \rightarrow B B 1 S \\
& \rightarrow 2 B 1 S \\
& \rightarrow 221 S \\
& \rightarrow 221 \mathrm{~A} \\
& \rightarrow 221 €
\end{aligned}
$$

$\rightarrow 221 \rightarrow$ (left sentential form)

terminals

S
a
c
k

$221 A$ terminal Non-terninal

Left most derivation $S \rightarrow 221 \quad A \not Z_{0}$ at loach step expand left mast derivation Eg: $A \rightarrow$ AlE

$$
\begin{array}{r}
\square A Z_{0} \\
O A \in Z 0 \\
O A Z_{0}
\end{array}
$$

* Match stack top to a rule
* Pop stack
* Push Hight hand side of rule onto stack.

Pule $A \rightarrow O A$ Add this to PDA

E, $A \rightarrow O A$

\rightarrow Right hand role pushed onto the stack.
\rightarrow Match the top of stark + Pop.
\rightarrow No ils at initial stage.

Eg: Rule $A \rightarrow O A$

Terminal symbol encountered
\rightarrow Match it
\rightarrow Pop it
\rightarrow Advance it
PDA design

$$
\text { terminal }\left\{\begin{array}{l}
0,0 \rightarrow \epsilon \\
1,1 \rightarrow \epsilon \\
z, z \rightarrow \epsilon
\end{array}\right.
$$

$$
\text { Non terminal }\left\{\begin{array}{l}
A, A \rightarrow \epsilon \\
\quad \text { for all } A \in \Sigma \text {. }
\end{array}\right.
$$

Final PDA

51012020

1) Given a PDA \rightarrow Build a CFG from at

(as)
step 1: Simplify the PDA
stop 2: Build a CFG
starting nen-turninal $=A q_{0} q_{f}$
other nen-terminal states: $A p q, A_{q r}, A_{r q_{0}}, \ldots$.

2) The PDA should empty its stack before accepting.
\rightarrow create a new start state do which put so to the stack

3) Make sure each transitions ether pushes or pops but not do both.
(i)

(ii) $\bigcirc \underset{\mathbb{W}}{a, \epsilon \rightarrow \epsilon} 0$

start with empty stack \& finish with an empty stack.

push z push A push B push C
consider two states P and q in the $P D A$
\rightarrow could we go from P to q without stack underflow and maintaing an empty stack at the beginning and end?
\rightarrow If something already on the stack they should net be changed.

What strings would do that?
We will a Non-terminal APq in our grammar. Apq well generate exactly those strings that will take us from p to q maintaining all the above stack conditions.
case 1:

What strings ran de generated by following this path?

$$
\begin{aligned}
\rightarrow & " a \cdots b^{\prime \prime} \\
& A_{p q} \rightarrow a A_{r s} b
\end{aligned}
$$

\rightarrow This rule will generate exactly those stings.
case 2:

What strings can be generated by following this path?
$A p q \rightarrow A_{p r} A_{r q}$
\rightarrow This rule will generate exactly those strings.

811012020
Unit -Iv Propertius of Bentect free languages
Simplification of contact free grammar:
In CFG
\rightarrow all the production rules a symbols are not needed for the derivation of strings.
\rightarrow Null production a unit production are abs found.
Normal form - elimination of these production and symuds is called simplification of CFG.
simplification consuls of the following
(1) Reduction of $\subset G$.
(2) Removal of unit production.
(3) Renal of null prosecution.

1. Reduction of $C F G$

CFG are reduced in two phases
Phase 1: Derivation of an equivalent grammar G^{\prime}, from the $C F G, G$ such that each variable durius some terminal string.
steps:

1. Include all symbols ω_{1}, that derives some terminal and initialize $i=1$.
2. Include symbols w_{i+1} that derives w_{i}
3. Increment i and repeat step 2, until $\omega_{i}+1=\omega_{i}$
4. Include all production rules that have ω_{i} in it.

Phase 2: Derbeation of an equivalent grannar G ", from the $C F G, G^{\prime}$, such that lech symbol apperas in an sentential form.
steps:

1. Induce the start symbol in Y_{1} and initialize $i=1$.
2. Include all symbols y_{i+1}, that can be derived from Y_{i} a include all production rules that have been applied.
3. Increment i and repeat step 2 until $Y_{i+1}=y_{i}$

Example: Find a reduced grammar equivalent to the Grammar C, having production rules

$$
P: s \rightarrow A C|B, A \rightarrow a, C \rightarrow c| B C, E \rightarrow a A / e
$$

solution:
Part 1:

$$
\begin{aligned}
& T=\{a, c, c\} \\
& \omega_{1}=\{A, C, E\} \\
& \omega_{2}=\{A, C, E, S\} \\
& \omega_{3}=\{A, C, E, S\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.G^{\prime}=\{(A, C, E, S),\{a, C, e\}, P, C S)\right\} \\
& P=\{S \rightarrow A C, A \rightarrow a, C \rightarrow C, E \rightarrow a A \mid C
\end{aligned}
$$

Port 2:

$$
\begin{aligned}
& y_{1}=\{s\} \\
& y_{2}=\{S, A, C\} \\
& y_{3}=\{S, A, C, a, C\} \\
& x_{4}=\{S, A, C, a, C\}
\end{aligned}
$$

$$
\begin{aligned}
& G^{\prime \prime}=\{(A, C, S),\{a, C\}, P,\{s\}\} \\
& P: S \rightarrow A C, A \rightarrow a, C \rightarrow c
\end{aligned}
$$

2. Removal of unit Production:-

Any production rule of the form $A \rightarrow B$, where $A, B E$ Non terminals is called unit production.
Procedure for removal:
$\mathrm{Sr} \rightarrow$ Te remove $A \rightarrow B$, add production A that livers X
to the grammar rule whenever
$B \rightarrow x$ occurs in the grammar
[x Luminal x can be Null $]$
SQ \rightarrow Delete $A \rightarrow B$ from the grammar.
Si \rightarrow Repeat from step 1 until all unit production $\rightarrow z \rightarrow \infty$ are removed.

Example:

1) Remove unit production from the grammar whose production rule is five lu
$P: S \rightarrow x y ; x \rightarrow a, y \rightarrow z \mid b, z \rightarrow M, M \rightarrow N, N \rightarrow a$.

$$
Y \rightarrow z, \quad z \rightarrow M, M \rightarrow N
$$

(1) since $M \rightarrow a$ we add $M \rightarrow a$

$$
P: s \rightarrow X Y, x \rightarrow a, y \rightarrow z \mathrm{lb}, z \rightarrow M, M \rightarrow a, N \rightarrow a .
$$

(2) Serra $M \rightarrow a$, fer add $z \rightarrow a$

$$
P: S \rightarrow X Y, x \rightarrow a, y \rightarrow z i b, z \rightarrow a, M \rightarrow a, N \rightarrow a .
$$

(3) Lina $z \rightarrow a$, we add $y \rightarrow a$

$$
P: S \rightarrow X Y, x \rightarrow a, y \rightarrow a \mid b, z \rightarrow a, M \rightarrow a, N \rightarrow a .
$$

Remove the unreachable symbols:- $P: S \rightarrow x y, x \rightarrow a, y \rightarrow a \mid b$.

1011012020
5. Removal of Null Production:-

Procedure for Removal:
step 1: To remove $A \rightarrow B$, look for all productions whore right side contains A.
step 2: Replace each occureness of ' A ' in each of these productions with E.
step 3: Add the resultant productions to the grammar
Example:

1) Remove null production from the following grammar

$$
\begin{aligned}
S \rightarrow & A B A C, A \rightarrow a A|E, B \rightarrow b B| \epsilon, C \rightarrow C, \\
& A \rightarrow \epsilon, B \rightarrow \epsilon
\end{aligned}
$$

I) Jo eliminate $A \rightarrow E$

$$
\begin{aligned}
& S \rightarrow A B A C \\
& S \rightarrow A B C / B A C / B C \\
& A \rightarrow a A \\
& A \rightarrow a
\end{aligned}
$$

New production: $S \rightarrow A B A C|A B C| B A C \mid B C$

$$
A \rightarrow Q A|a, B \rightarrow b B| \in, C \rightarrow C
$$

2) Io eliminate $B \rightarrow E$.

$$
S \rightarrow A A C \mid A C / C, B \rightarrow b
$$

New production: $S \rightarrow A B A C|A B C| B A C|B C| A A C|A C| C$ $A \rightarrow a A / a \quad B \rightarrow b B$.

1210120
Pumping Lemma
For context free languages.
Pumping hemma (for CFL) is used to prove that a language is not contest free.

If A is a context free language, then A has a pumping length ' P 'such that any string ' S ', where $|S| \geq D$ may be divided into 5 parts $S=U V X Y z$ such that the following conditions must be true:
(1) $u v^{i} x y^{i} z$ is in A for avery $i \geq 0$
(2) $|v y|>0$
(3) $|v x y| \leq P$.

To prove that a language is not context free using Pumping lemma

1) Assume A is contest free.
2) It has to have a pumping length (say P)
3) All strings longer than P can be pumped $|S| \geq P$.
4) Now find a string ' S ' in A such that $|S| \geq P$.
5) Divide s into $u v x y z$.
6) Show that $u v^{l} x y^{i} z \notin A$ for some i
7) The consider the ways that s can be dluided int $u v x y z$.
8) Show that none of these can satisfy all the 3 pumping conditions at the same time
a) S cannot be pumped $=z$ contradiction.

Escample: 1) show that $L=\left\{a^{N} b^{N} c^{N} \mid N \geq 0\right\}$ is Not.
(i) Assume that L is contest free
ii) L must hour pumping length (say P)
(iii) Now we take a string S such that $S=a b^{P} c$.
(ii) We divide s into parts $U V x y z$.

Eg: $P=4$, so $a^{4} b^{4} c^{4}$.
case 1: v and y each contain only cone type of symbol.

$$
\begin{aligned}
& u v^{i} \times y^{i} z \quad i=2 \\
& u v^{2} x y^{2} z
\end{aligned}
$$

aaa aa bbb cc ccc

$$
a^{6} b^{4} e^{5} \notin L
$$

case 2: Either V or y has more that one kind of symbols.

$$
\begin{aligned}
& \text { a a arb bbcccc }
\end{aligned}
$$

$$
\begin{aligned}
& u v^{i} x y^{i} z \quad(i=2) \\
& u v^{2} x y^{2} z
\end{aligned}
$$

aaaabbaabbbbbcccc

$$
a^{N} b^{N} c^{N} \notin L
$$

$15 / 10 / 2020$
Closure Properties of contest free languages.
(1) Substitutions
(2) Application of substitution

Theorem: * Union

* borcateration
* Blouse (*) + Positive closure (t)
* Homomorphism
(3) Reversal
(5) Inverse homomorphism.
(4) Intersection with Regular language
(1) substitutions:

$$
\varepsilon \rightarrow a
$$

(alphabet) (symbol)
La as S(a) for each symbol a

$$
s(w)=s\left(a_{1}\right) \cdot s\left(a_{2}\right) \ldots s\left(a_{n}\right)
$$

where

$$
\begin{aligned}
& w=a_{1} a_{2} \cdots a_{n} \\
& s=x_{1} x_{2} \cdot \cdots x_{n}=a_{i}
\end{aligned}
$$

$s(a i)$
where $i=1,2, \ldots n$.

$$
\begin{gathered}
s(L)=\text { Union of } s(\omega) \\
\text { for } \forall \omega \operatorname{in} L
\end{gathered}
$$

Theorem: The CFL are closed under the following operation.

1. Union
2. concatenation
3. closure ($*$) + positive (t)
4. Homomorphism.

Proof:

* Proper substitulión
* From one CFL to another
* Produced CFL'

1. Union:

$$
\begin{aligned}
& S(L)=L_{1} \cup L_{2} \\
& \text { where } L=\{1,2\} \\
& S(1)=L_{1}+\Delta(2)=L_{2}
\end{aligned}
$$

2. Concatenation:

$$
\begin{aligned}
& s(L)=L_{1} \cdot L_{2} \\
& \text { Whore } L=\{12\} \\
& s(1)=L_{1} \text { o } s(2)=L_{2}
\end{aligned}
$$

3. Colosure a positive closure:

$$
L_{1} \text { is CFL }
$$

Where $L=\{1\}^{*}$

$$
\begin{aligned}
s(1) & =L_{1} \\
s(L) & =L_{1}^{*} \\
\text { Whore } L & =\{1\}^{+} \\
s(1) & =L_{1} \\
s(L) & =L_{1}+
\end{aligned}
$$

4. Homomorphism:
$L \rightarrow C F L$ over alphabet E
$h \rightarrow$ homomorphism on E

$$
\begin{aligned}
& s \rightarrow h \\
& s(a)=\{h(a)\} \\
& \text { for all } a \ln \varepsilon \\
& \therefore s(L)=h(L)
\end{aligned}
$$

(3) Reversal:

CFL's are also closed under rurrsal
No vulestitution method is used
Theorem: If α is a CFL then so is $\angle R$
Proof: $L=L(a)$
Where some $C F L C_{T}=(V, T, P, S)$

$$
G^{R}=\left(V, T, p^{R}, S\right)
$$

Where $P^{R}=$ Reverse of production

$$
L\left(G^{R}\right)=L^{R}
$$

(4) Intersection with a Regular language:

Theorem: If h is a $C F L+R$ is a regular language, then LAR is a CFL.

stack

Proof:

$$
\begin{aligned}
& P=\left(Q_{p}, \varepsilon, \Gamma, \delta_{p}, q_{p}, z_{0}, F_{P}\right) \\
& A=\left(Q_{A}, \varepsilon, \delta_{A}, q_{A}, F_{A}\right) \\
& P^{\prime}=\left(Q_{P} \times Q_{A}, \varepsilon, \Gamma, \delta\left(q_{p}, q_{A}\right), z_{0}, F_{P} \times F_{A}\right)
\end{aligned}
$$

$\delta((q, p), a, x) \rightarrow((r, s), \gamma)$ is defined to set of all pairs such that

1. $s=\hat{\delta}_{A}(p, a)$
2. pair (r, γ) is in $f_{p}(a, a, x)$

191012090
Turing machine:

FSM: The input string Control:

$$
a a a a b a b
$$

* Mare one direction forward
* Limited memory

PDA: The Input string

Turing machine:
A tape
\longleftarrow Jape head \rightarrow
$a a a|b a b| a|a| \cup \cdot \ldots$
\rightarrow sequence of infinite symbols

1) Tape alphabets: $\varepsilon=\left\{0,1, a, b, x, z_{0}\right\}$
2) The Blank \square is a special symbol
\rightarrow It is used to fill the infinite tape does not belong to Σ.
Initial configuration:

$$
a \text { a a a b a bb a a a } \sim \omega v \ldots
$$

The input string Blanks out to infinity.
Operations on the tape:
\rightarrow Read/scan symbol below the tape head
\rightarrow Upolate / Write a symbol below the tape head.
Rules of operation 1:
At each step of computation:
\rightarrow Read the current symbol
\rightarrow update (ie, write) the sone cell.
\rightarrow Move escartly one all either left or right. If le are at the left hand (end) of the tape and trying to move left, then do not move. stay at the left end

If you don't wont to update the cl, Lust write the same symbol

$$
\mathrm{O}^{\text {l-1,L }} \bigcirc
$$

Rules of operation 2 :
\rightarrow control is with a sort of FSM
\rightarrow Initial state
\rightarrow Final states: (there are two final states)

1) The accept state
2) The reject state.
\rightarrow computation ran victor
3) HALT and accept
4) HALT and reject.
5) LOOD (the machine falls to $H A L T$).

221012020
Turing machine:
A turing machine is defined with 7 luples

$$
\left(Q, \varepsilon, \Gamma, g, q_{0}, b, F\right)
$$

$Q \rightarrow$ Non monpty set of states
$\varepsilon \rightarrow$ Non empty set of symbols
$r \rightarrow$ Non imply set of tape symbols.
$\delta \rightarrow$ Transetion function defined as

$$
Q \times \Sigma \rightarrow \Gamma \times(R / L) \times Q
$$

$q_{0} \rightarrow$ Initial state
$b \rightarrow$ Blank symbol
$F \rightarrow$ set of final states (Arcupt state \& Reject state)
Thus, the production rule of turing machine will be written as

$$
8\left(q_{0}, a\right) \rightarrow\left(a_{1}, y, R\right)
$$

Turing's Thesis:
Turing's thesis states that any computation that can be carried out by mechanical means can be performed by some turing machine. Jew arguments for accepting this thesis are:
ii) Anything that can by done on escisting digital computer van also done by turing machine.

1) Design a taring machine which recognizes the language

$$
\alpha=01^{*} 0
$$

$$
\begin{array}{|l|l|l|l|l}
\hline x & y & x & -\cdots \\
\hline
\end{array}
$$

2. O^{N}, N :

Design a Turing machine to add two given integers. Solution:

Assume that m and n are positive integers. Let us represent the input as $0^{m} B 0^{n}$.
If the separating B is removed and 0 's come together we have the required output, $m+n$ is unary.
(i) The separating B is replaced by a 0 .
(ii) The rightmost 0 is erased i.e., replaced by B.

Let us define $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\{0\},\{0, B\}, \delta, q_{0},\left\{q_{4}\right\}\right)$. δ is defined by Table shown below.

	Tape Symbol	
State	0	B
q_{0}	$\left(q_{0}, 0, R\right)$	$\left(q_{1}, 0, R\right)$
q_{1}	$\left(q_{1}, 0, R\right)$	$\left(q_{2}, B, L\right)$
q_{2}	$\left(q_{3}, B, L\right)$	-
q_{3}	$\left(q_{3}, 0, L\right)$	$\left(q_{4}, B, R\right)$

M starts from ID $q_{0} 0^{m} B 0^{n}$, moves right until seeking the blank B. M changes state to q_{1}. On reaching the right end, it reverts, replaces the rightmost 0 by B. It moves left until it reaches the beginning of the input string. It halts at the final state q_{4}.
Some unsolvable Problems are as follows:
(i) Does a given Turing machine M halts on all input?
(ii) Does Turing machine M halt for any input?
(iii) Is the language $L(M)$ finite?
(iv) Does $L(M)$ contain a string of length k, for some given k ?
(v) Do two Turing machines $M 1$ and $M 2$ accept the same language?

It is very obvious that if there is no algorithm that decides, for an arbitrary given Turing machine M and input string w, whether or not M accepts w. These problems for which no algorithms exist are called "UNDECIDABLE" or "UNSOLVABLE".

Code for Turing Machine:

Our next goal is to devise a binary code for Turing machines so that each TM with input alphabet $\{0,1\}$ may be thought of as a binary string. Since we just saw how to enumerate the binary strings, we shall then have an identification of the Turing machines with the integers, and we can talk about "the i th Turing machine, M_{i}." To represent a TM $M=\left(Q,\{0,1\}, \Gamma, \delta, q_{1}, B, F\right)$ as a binary string, we must first assign integers to the states, tape symbols, and directions L and R.

- We shall assume the states are $q_{1}, q_{2}, \ldots, q_{r}$ for some r. The start state will always be q_{1}, and q_{2} will be the only accepting state. Note that, since we may assume the TM halts whenever it enters an accepting state, there is never any need for more than one accepting state.
- We shall assume the tape symbols are $X_{1}, X_{2}, \ldots, X_{s}$ for some s. X_{1} always will be the symbol $0, X_{2}$ will be 1 , and X_{3} will be B, the blank. However, other tape symbols can be assigned to the remaining integers arbitrarily.
- We shall refer to direction L as D_{1} and direction R as D_{2}.

Since each TM M can have integers assigned to its states and tape symbols in many different orders, there will be more than one encoding of the typical TM. However, that fact is unimportant in what follows, since we shall show that no encoding can represent a TM M such that $L(M)=L_{d}$.

Once we have established an integer to represent each state, symbol, and direction, we can encode the transition function δ. Suppose one transition rule is $\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{l}, D_{m}\right)$, for some integers i, j, k, l, and m. We shall code this rule by the string $0^{i} 10^{j} 10^{k} 10^{l} 10^{m}$. Notice that, since all of i, j, k, l, and m are at least one, there are no occurrences of two or more consecutive 1 's within the code for a single transition.

A code for the entire TM M consists of all the codes for the transitions, in some order, separated by pairs of 1's:

$$
C_{1} 11 C_{2} 11 \cdots C_{n-1} 11 C_{n}
$$

where each of the C 's is the code for one transition of M.

Diagonalization language:

- The language L_{d}, the diagonalization language, is the set of strings w_{i} such that w_{i} is not in $L\left(M_{i}\right)$.

That is, L_{d} consists of all strings w such that the TM M whose code is w does not accept when given w as input.

The reason L_{d} is called a "diagonalization" language can be seen if we consider Fig. 9.1. This table tells for all i and j, whether the TM M_{i} accepts input string $w_{j} ; 1$ means "yes it does" and 0 means "no it doesn't." ${ }^{1}$ We may think of the i th row as the characteristic vector for the language $L\left(M_{i}\right)$; that is, the 1's in this row indicate the strings that are members of this language.

This table represents language acceptable by Turing machine
The diagonal values tell whether M_{i} accepts w_{i}. To construct L_{d}, we complement the diagonal. For instance, if Fig. 9.1 were the correct table, then the complemented diagonal would begin $1,0,0,0, \ldots$. Thus, L_{d} would contain $w_{1}=\epsilon$, not contain w_{2} through w_{4}, which are 0,1 , and 00 , and so on.

The trick of complementing the diagonal to construct the characteristic vector of a language that cannot be the language that appears in any row, is called diagonalization. It works because the complement of the diagonal is

Proof that L_{d} is not recursively enumerable:
Theorem 9.2: L_{d} is not a recursively enumerable language. That is, there is no Turing machine that accepts L_{d}.

PROOF: Suppose L_{d} were $L(M)$ for some TM M. Since L_{d} is a language over alphabet $\{0,1\}, M$ would be in the list of Turing machines we have constructed, since it includes all TM's with input alphabet $\{0,1\}$. Thus, there is at least one code for M, say i; that is, $M=M_{i}$.

Now, ask if w_{i} is in L_{d}.

- If w_{i} is in L_{d}, then M_{i} accepts w_{i}. But then, by definition of L_{d}, w_{i} is not in L_{d}, because L_{d} contains only those w_{j} such that M_{j} does not accept w_{j}.
- Similarly, if w_{i} is not in L_{d}, then M_{i} does not accept w_{i}, Thus, by definition of L_{d}, w_{i} is in L_{d}.

Since w_{i} can neither be in L_{d} nor fail to be in L_{d}, we conclude that there is a contradiction of our assumption that M exists. That is, L_{d} is not a recursively enumerable language.

Recursive Languages:
We call a language L recursive if $L=L(M)$ for some Turing machine M such that:

1. If w is in L, then M accepts (and therefore halts).
2. If w is not in L, then M eventually halts, although it never enters an accepting state.

A TM of this type corresponds to our informal notion of an "algorithm," a well-defined sequence of steps that always finishes and produces an answer. If we think of the language L as a "problem," as will be the case frequently, then problem L is called decidable if it is a recursive language, and it is called undecidable if it is not a recursive language.

Theorem 9.3: If L is a recursive language, so is \bar{L}.
PROOF: Let $L=L(M)$ for some TM M that always halts. We construct a TM \bar{M} such that $\bar{L}=L(\bar{M})$ by the construction suggested in Fig. 9.3. That is, \bar{M} behaves just like M. However, M is modified as follows to create \bar{M} :

1. The accepting states of M are made nonaccepting states of \bar{M} with no transitions; i.e., in these states \bar{M} will halt without accepting.
2. \bar{M} has a new accepting state r; there are no transitions from r.
3. For each combination of a nonaccepting state of M and a tape symbol of M such that M has no transition (i.e., M halts without accepting), add a transition to the accepting state r.

Since M is guaranteed to halt, we know that \bar{M} is also guaranteed to halt. Moreover, \bar{M} accepts exactly those strings that M does not accept. Thus \bar{M} accepts \bar{L}.

Theorem 9.4: If both a language L and its complement are RE , then L is recursive. Note that then by Theorem $9.3, \bar{L}$ is recursive as well.

PROOF: The proof is suggested by Fig. 9.4. Let $L=L\left(M_{1}\right)$ and $\bar{L}=L\left(M_{2}\right)$. Both M_{1} and M_{2} are simulated in parallel by a TM M. We can make M a two-tape TM, and then convert it to a one-tape TM, to make the simulation easy and obvious. One tape of M simulates the tape of M_{1}, while the other tape of M simulates the tape of M_{2}. The states of M_{1} and M_{2} are each components of the state of M.

Figure 9.4: Simulation of two TM's accepting a language and its complement
If input w to M is in L, then M_{1} will eventually accept. If so, M accepts and halts. If w is not in L, then it is in \bar{L}, so M_{2} will eventually accept. When M_{2} accepts, M halts without accepting. Thus, on all inputs, M halts, and
$L(M)$ is exactly L. Since M always halts, and $L(M)=L$, we conclude that L is recursive.

Universal

Language:
We define L_{u}, the universal language, to be the set of binary strings that encode, in the notation of Section 9.1.2, a pair (M, w), where M is a TM with the binary input alphabet, and w is a string in $(0+1)^{*}$, such that w is in $L(M)$. That is, L_{u} is the set of strings representing a TM and an input accepted by that TM. We shall show that there is a TM U, often called the universal Turing machine, such that $L_{u}=L(U)$. Since the input to U is a binary string, U is in fact some M_{j} in the list of binary-input Turing machines we developed in

Undecidability of Universal Language:
Theorem 9.6: L_{u} is RE but not recursive.
PROOF: We just proved in Section 9.2.3 that L_{u} is RE. Suppose L_{u} were recursive. Then by Theorem 9.3, $\overline{L_{u}}$, the complement of L_{u}, would also be recursive. However, if we have a TM M to accept $\overline{L_{u}}$, then we can construct a TM to accept L_{d} (by a method explained below). Since we already know that L_{d} is not RE, we have a contradiction of our assumption that L_{u} is recursive.

Figure 9.6: Reduction of L_{d} to $\overline{L_{u}}$
Suppose $L(M)=\overline{L_{u}}$. As suggested by Fig. 9.6, we can modify TM M into a TM M^{\prime} that accepts L_{d} as follows.

1. Given string w on its input, M^{t} changes the input to $w 111 w$. You may, as an exercise, write a TM program to do this step on a single tape. However, an easy argument that it can be done is to use a second tape to copy w, and then convert the two-tape TM to a one-tape TM.
2. M^{\prime} simulates M on the new input. If w is w_{i} in our enumeration, then M^{\prime} determines whether M_{i} accepts w_{i}. Since M accepts $\overline{L_{u}}$, it will accept if and only if M_{i} does not accept w_{i}; i.e., w_{i} is in L_{d}.

Thus, M^{\prime} accepts w if and only if w is in L_{d}. Since we know M^{\prime} cannot exist by Theorem 9.2 , we conclude that L_{u} is not recursive.

Class p-problem solvable in polynomial time:

A Turing machine M is said to be of time complexity $T(n)$ [or to have "running time $T(n)$ "] if whenever M is given an input w of length n, M halts after making at most $T(n)$ moves, regardless of whether or not M accepts. This definition applies to any function $T(n)$, such as $T(n)=50 n^{2}$ or $T(n)=3^{n}+5 n^{4}$; we shall be interested predominantly in the case where $T(n)$ is a polynomial in n. We say a language L is in class \mathcal{P} if there is some polynomial $T(n)$ such that $L=L(M)$ for some deterministic TM M of time complexity $T(n)$.

Non deterministic polynomial time:

A nondeterministic TM that never makes more than $\mathrm{p}(\mathrm{n})$ moves in any sequence of choices for some polynomial p is said to be non polynomial time NTM.

NP is the set of languags that are accepted by polynomial time NTM's
Many problems are in NP but appear not to be in p .
One of the great mathematical questions of our age: is there anything in NP that is not in p ?
NP-complete problems:
If We cannot resolve the " $\mathrm{p}=\mathrm{np}$ question, we can at least demonstrate that certain problems in NP are the hardest, in the sense that if any one of them were in P , then $\mathrm{P}=\mathrm{NP}$.
\square These are called NP-complete.
\square Intellectual leverage: Each NP-complete problem's apparent difficulty reinforces the belief that they are all hard.
Methods for proving NP-Complete problems:
Polynomial time reduction (PTR): Take time that is some polynomial in the input size to convert instances of one problem to instances of another.
If P 1 PTR to P 2 and P 2 is in P 1 the so is P 1 .
\square Start by showing every problem in NP has a PTR to Satisfiability of Boolean formula.
\square Then, more problems can be proven NP complete by showing that SAT PTRs to them directly or indirectly.

Undecidable Problem about Turing Machine

- Reduction is a technique in which if a problem P 1 is reduced to a problem P 2 then any solution of P 2 solves P 1 . In general, if we have an algorithm to convert an instance of a problemP1 to an instance of a problemP2 that have the same answer then it is called as P1 reduced P2.
- Hence if P1 is not recursive then P2 is also not recursive. Similarly, if P1 is not recursively enumerable then P 2 also is not recursively enumerable.
- Theorem: if P1 is reduced to P2 then
- If P 1 is undecidable, then P 2 is also undecidable.
- If P 1 is non-RE, then P 2 is also non-RE.

Proof:

- Consider an instance w of P1. Then construct an algorithm such that the algorithm takes instance w as input and converts it into another instance x of P2. Then apply that algorithm to check whether x is in P 2.
- If the algorithm answer 'yes' then that means x is in P 2 , similarly we can also say that w is in P1. Since we have obtained P2 after reduction of P1. Similarly if algorithm answer 'no' then x is not in P2, that also means w is not in P1. This proves that if Pl is undecidable, then P1 is also undecidable.
- There are two types of languages empty and non empty language. $L_{e} t L_{e}$ denotes an empty language, and $L_{\text {ne }}$ denotes non empty language. Let w be a binary string, and Mi be a TM . If $L\left(M_{j}\right)=\Phi$ then Mi does not accept input then w is in L_{e}. Similarly, if $L\left(M_{j}\right)$ is not the empty language, then w is in $\mathrm{L}_{\text {ne }}$. Thus we can say that
- $L_{e}=\{M \mid L(M)=\Phi\}$
$L_{n e}=\{M \mid L(M) \neq \Phi\}$
- Both L_{e} and $L_{n e}$ are the complement of one another.

Post Correspondance Problem

- The Post Correspondence Problem(PCP) was invented by Emil Post in 1946. It is called as an undecidable decision problem. The PCP problem rather than an alphabet \sum is considered
- Given the followingtwo lists, \mathbf{M} and \mathbf{N} of non-empty strings over $\sum-$
- $M=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$
- $\mathrm{N}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots, \ldots, \mathrm{y}_{\mathrm{n}}\right)$
- The Post Correspondence Solution, if for some $\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots \ldots \ldots . \mathrm{i}_{\mathrm{k}}$, where $1 \leq \mathrm{i}_{\mathrm{j}} \leq \mathrm{n}$, the condition $\mathrm{x}_{\mathrm{i} 1} \ldots . . \mathrm{x}_{\mathrm{ik}}=$ $y_{i 1} \ldots . . y_{\mathrm{y}_{\mathrm{ik}}}$ satisfies.

Example

- $M=(a b b, ~ a a, ~ a a a) ~ a n d N=(b b a, ~ a a a, ~ a a)$
- Includea Post Correspondence Solution?
- Solution
- $x_{1} x_{2} x_{3} M$ AbbaaaaaNBbaaaaaa

TheClass P

- Definition: The complexity class P is the set of all decision problems that can be solved with worst-case polynomial time-complexity.
- A problem is in the class P if it is a decision problem and there exists an algorithm that solves any instance of size n in O(nk) time, for some integer k.
- Strictly, n must be the number of bits needed for a 'reasonable' encoding of the input. But we won't get bogged down in such fine details.
- So P is just the set of tractable decision problems: the decision problems for which we have polynomial-time algorithms.
- The problems in the picture that are in NP but not in P are onesthat we're not sure about:-
- there is no known polynomial-time algorithm; -
- but no proof of intractability.
- We know that $P \subseteq N P$. But much more than that we don't know.
- The definition of NP allows for the inclusion of problems that may not be in P. But it may turn out that there are no such problems and that $\mathrm{P}=\mathrm{NP}$

TheClassP and NP

