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UNIT NO: 5 NAME: UNDECIDABILITY

Design a Turing machine to add two given integers.
Solution:

Assume that m and n are positive integers. Let us represent the input as 0" B0".
If the separating B is removed and 0’s come together we have the required
output, 7 + » 1s unary.

(1) The separating B 1s replaced by a 0.
(11) The rightmost 0 is erased 1.e.. replaced by B.

Let us define M =({gy.91-9>-93-94}-10}.{0.B}.0.4,.1q,}). O 1s
defined by Table shown below.

Tape Symbol

State 0 B
o (40.0.R) (¢,.0.R)
0 (¢,:0.R) (¢,.B.L)
7, (¢5:B.1) —
s (g3.0.L) (q4.B.R)

M starts from ID ¢,0™ B0", moves right until seeking the blank B. M

changes state to ¢,. On reaching the right end. it reverts. replaces the rightmost
0 by B. It moves left until it reaches the beginning of the input string. It halts at
the final state g,.

Some unsolvable Problems are as follows:

(1) Does a given Turing machine M halts on all input?

(i1) Does Turing machine M halt for any input?

(iii) Is the language L(M) finite?

(iv) Does L(M) contain a string of length £, for some given k?

(v) Do two Turing machines M1 and M2 accept the same language?

It is very obvious that if there is no algorithm that decides, for an arbitrary given Turing machine

M and input string w, whether or not M accepts w. These problems for which no algorithms exist
are called “UNDECIDABLE” or “UNSOLVABLE”.

Code for Turing Machine:



Our next goal is to devise a binary code for Turing machines so that each TM
with input alphabet {0, 1} may be thought of as a binary string. Since we just
saw how to enumerate the binary strings, we shall then have an identification of
the Turing machines with the integers, and we can talk about “the ith Turing
machine, M;.” To represent a TM M = (Q,{0,1},T,6,q1, B, F) as a binary
string, we must first assign integers to the states, tape symbols, and directions
L and R.

e We shall assume the states are q1,4z,.-.,gr for some r. The start state
will always be ¢;, and go will be the only accepting state. Note that, since
we may assume the TM halts whenever it enters an accepting state, there
is never any need for more than one accepting state.

e We shall assume the tape symbols are X;, Xo,..., Xy for some 5. X
always will be the symbol 0, X, will be 1, and X3 will be B, the blank.
However, other tape symbols can be assigned to the remaining integers
arbitrarily.

e We shall refer to direction L as D, and direction R as Ds.

Since each TM M can have integers assigned to its states and tape symbols in
many different orders, there will be more than one encoding of the typical TM.
However, that fact is unimportant in what follows, since we shall show that no
encoding can represent a TM M such that L{M) = Lq.

Once we have established an integer to represent each state, symbol, and
direction, we can encode the transition function 4. Suppose one transition rule
is 6(qi, X;) = (g, Xy, Din), for some integers i, j, ¥, I, and m. We shall code
this rule by the string 0°10?1010'10™. Notice that, since all of ¢, 7, k, I, and m
are at least one, there are no occurrences of two or more consecutive 1’s within
the code for a single transition.

A code for the entire TM M consists of all the codes for the transitions, in
some order, separated by pairs of 1’s:

C111C311---Cp_111C,

where each of the (s is the code for one transition of M.



Diagonalization language:

o The language Lg, the diagonalization language, is the set of strings w;
such that w; is not in L{M;).

That is, Lg4 consists of all strings w such that the TM M whose code is w does
not accept when given w as input.

The reason Ly is called a “diagonalization” language can be seen if we
consider Fig. 9.1. This table tells for all 7 and j, whether the TM M; accepts
input string w;; 1 means “yes it does” and 0 means “no it doesn’t.”! We may
think of the ith row as the characteristic vector for the language L(M;); that
is, the 1’s in this row indicate the strings that are members of this language.

& 5
1 2 3 4 -
AONEE
2 [1N\aN\0 0
SEN NN
¢40101

Diagonal

This table represents language acceptable by Turing machine

The diagonal values tell whether M; accepts w;. To construct L4, we com-
plement the diagonal. For instance, if Fig. 9.1 were the correct table, then
the complemented diagonal would begin 1,0,0,0,... . Thus, Lg would contain
w, = €, not contain wy through wy, which are 0, 1, and 00, and so on.

The trick of complementing the diagonal to construct the characteristic
vector of a language that cannot be the language that appears in any row,
is called diagonalization. It works because the complement of the diagonal is



Proof that Lq is not recursively enumerable:

Theorem 9.2: L, is not a recursively enumerable language. That is, there is
no Turing machine that accepts L.

PROOF: Suppose Ly were L(M) for some TM M. Since L, is a language over
alphabet {0, 1}, M would be in the list of Turing machines we have constructed,
since it includes all TM’s with input alphabet {0,1}. Thus, there is at least
one code for M, say i; that is, M = M,;.

Now, ask if w; is in Lg.

o Ifw; isin Ly, then M; accepts w;. But then, by definition of L, w; 18 not
in Ly, because Lq contains only those w; such that M; does not accept
wy.

e Similarly, if w; is not in Lg, then M; does not accept w;, Thus, by defini-
tion of Ly, w; s in Ly.

Since w; can neither be in Ly nor fail to be in L4, we conclude that there is a
contradiction of our assumption that M exists. That is, L, is not a recursively
enumerable language. O

Recursive Languages:
We call a language L recursive if L = L(M) for some Turing machine M such
that:

1. If wis in L, then M accepts (and therefore halts).

2. If w is not in L, then M eventually halts, although it never enters an
accepting state.

A TM of this type corresponds to our informal notion of an “algorithm,” a
well-defined sequence of steps that always finishes and produces an answer.
If we think of the language L as a “problem,” as will be the case frequently,
then problem L is called decidable if it is a recursive language, and it is called
undecidable if it is not a recursive language.



Theorem 9.3: If L is a recursive language, so is L.

PROOF: Let . = L(M) for some TM M that always halts. We construct a TM
M such that T = L(M ) by the construction suggested in Fig. 9.3. That is, M
behaves just like M. However, M is modified as follows to create M:

1. The accepting states of M are made nonaccepting states of M with no
transitions; i.e., in these states M will halt without accepting.

2. M has a new accepting state r; there are no transitions from r.

3. For each combination of a nonaccepting state of M and a tape symbol of
M such that M has no transition (i.e., M halts without aceepting), add
a transition to the accepting state r.

y o — Accept> <: Accept
—™ Reject ;

Reject

Since M is guaranteed to halt, we know that M is also guaranteed to halt.

Moreover, M accepts exactly those strings that M does not accept. Thus M
accepts L. 0O



Theo?em 9.4: If both a language L and its complement are RE, then L is
recursive. Note that then by Theorem 9.3, L is recursive as well.

PROOF: The proof is suggested by Fig. 9.4. Let L = L(M) and L = L(M>).
Both M; and M, are simulated in parallel by a TM M. We can make M a
two-tape TM, and then convert it to a one-tape TM, to make the simulation
easy and obvious. One tape of M simulates the tape of My, while the other tape
of M simulates the tape of M. The states of M; and M- are each components
of the state of M.

—™ Accept —®  Accept

—™ Accept — Reject

Figure 9.4: Simulation of two TM’s accepting a language and its complement

If input w to M is in L, then M, will eventually accept. If so, M accepts
and halts. If w is not in L, then it is in L, so M> will eventually accept. When
M, accepts, M halts without accepting. Thus, on all inputs, M halts, and

L(M) is exactly L. Since M always halts, and L(M) = L, we conclude that L
is recursive. O

Universal
Language:

We define L., the universal language, to be the set of binary strings that
encode, in the notation of Section 9.1.2, a pair (M,w), where M is a TM with
the binary input alphabet, and w is a string in (0+1)*, such that w is in L(M).
That is, Ly is the set of strings representing a TM and an input accepted by
that TM. We shall show that there is a TM U, often called the universal Turing
machine, such that L, = L(U). Since the input to U is a binary string, U is
in fact some M; in the list of binary-input Turing machines we developed in



Undecidability of Universal Language:

Theorem 9.6: L, is RE but not recursive.

PROOF: We just proved in Section 9.2.3 that L, is RE. Suppose L, were
recursive. Then by Theorem 9.3, L,, the complement of L, would also be
recursive. However, if we have a TM M to accept L, then we can construct a
TM to accept L4 (by a method explained below). Since we already know that
L4 is not RE, we have a contradiction of our assumption that L., is recursive.

Hypothetical Accept —T ™ Accept
W - Copy [ w1llw - algorithm
Mior L s Reject » Reject

M’ for Ld

Figure 9.6: Reduction of L to L,

Suppose L(M) = L. As suggested by Fig. 9.6, we can modify TM M into
a TM M’ that accepts Ly as follows.

1. Given string w on its input, M’ changes the input to wlllw. You may,
as an exercise, write a TM program to do this step on a single tape.
However, an easy argument that it can be done is to use a second tape to
copy w, and then convert the two-tape TM to a one-tape TM.

2. M’ simulates M on the new input. If w is w; in our enEnerat%Dn, then
M’ determines whether M; accepts w;. Since M accepts L, it will accept
if and only if M; does not accept w;; i.e., wy is in Lq.

Thus, M" accepts w if and only if w is in L. Since we know M’ cannot exist
by Theorem 9.2, we conclude that L, is not recursive. U



Class p-problem solvable in polynomial time:

A Turing machine M is said to be of time complezity T'(n) [or to have “running
time T'(n)"] if whenever M is given an input w of length n, M halts after making
at most T'(n) moves, regardless of whether or not M accepts. This definition
applies to any function T'(n), such as T(n) = 50n% or T(n) = 3" + 5nt; we
shall be interested predominantly in the case where T'(n) is a polynomial in n.
We say a language L is in class P if there is some polynomial T'(n) such that
L = L(M) for some deterministic TM M of time complexity T'(n).

Non deterministic polynomial time:
A nondeterministic TM that never makes more than p(n) moves in any sequence of choices for
some polynomial p is said to be non polynomial time NTM.

[] NP is the set of languags that are accepted by polynomial time NTM’s

[J Many problems are in NP but appear not to be in p.

[J One of the great mathematical questions of our age: is there anything in NP that is not in p?
NP-complete problems:

If We cannot resolve the “p=np question, we can at least demonstrate that certain problems in NP
are the hardest , in the sense that if any one of them were in P , then P=NP.

[] These are called NP-complete.

[ Intellectual leverage: Each NP-complete problem’s apparent difficulty reinforces the belief
that they are all hard.

Methods for proving NP-Complete problems:

[] Polynomial time reduction (PTR): Take time that is some polynomial in the input size to
convert instances of one problem to instances of another.

(] IfP1 PTR to P2 and P2 is in P1 the so is P1.

[ Start by showing every problem in NP has a PTR to Satisfiability of Boolean formula.

[J Then, more problems can be proven NP complete by showing that SAT PTRs to them
directly or indirectly.



Undecidable Problem about Turing
Machine



 Reduction Is a technique In which If a problem P1 Is
reduced to a problem P2 then any solution of P2 solves
P1. In general, If we have an algorithm to convert an
Instance of a problem P1 to an instance of a problem P2
that have the same answer then 1t Is called as P1 reduced
P2,

e Hence If P1 Is not recursive then P2 Is also not
recursive. Similarly, If P1 Is not recursively enumerable
then P2 also IS not recursively enumerable.



e Theorem: If P1is reduced to P2 then
 |fP1isundecidable, then P2 s also undecidable.
e |fP1isnon-RE, thenP2 is alsonon-RE.



Proof:

e Consider an instance w of P1. Then construct an algorithm such
that the algorithm takes instance w as input and converts It into
another Instance x of P2. Then apply that algorithm to check
whether X IS In P2.

o |f the algorithm answer ‘yes' then that means X is In P2, similarly
we can also say that W is in P1. Since we have obtained P2 after
reduction of P1. Similarly if algorithm answer 'no' then X Is not
In P2, that also means w is not in P1. This proves that if P1 is
undecidable, then P1 is also undecidable.




* There are two types of languages empty and non empty
language. L.t L. denotes an empty language, and
L. denotes non empty language. L.t w be a binary
string, and Mi be a TM. If L(M}) = ® then Mi does not
accept input then w is in L. Similarly, if L(M)) Is not the
empty language, thenwis in L. Thus we can say that



* L,={M|LM)=0}
Le={M | L(M) # &}

 Bothl,andL, . are the complement of one another.



Post Correspondance Problem



The Post Correspondence Problem (PCP) was invented
by Emil Post in 1946. It is called as an undecidable
decision problem. The PCP problem rather than an
alphabet  is considered

Given the following two lists, M and N of non-empty
strings over ) —

M= (X1, X, Xapevievion X))
N= (Y1 Y0 Yareeerioen Y)




* The Post Correspondence Solution, if for some
Il vsvesveee Iy Where 1< < n, the condition gy .....X5 =
Vig oYy SLISTIES.,



Example

« M=(abb, aa, aaa) and N =(bba, aaa, aa)
* Include a Post Correspondence Solution?
e Solution

* X XXJMAbbaaasaNBbacaaaa



The Class P



e Definition: The complexity class P is the set of all
decision problems that can be solved with worst-case

polynomial time-complexity.

e Aproblemisinthe classP If it Is a decision problem and
there exists an algorithm that solves any instance of size
nin O(nk) time, for some integer k.



o Strictly, n must be the number of bits needed for a
‘reasonable’ encoding of the Input. But we won't get
bogged down in such fine detalls.

o S0P s just the set of tractable decision problems: the
decision problems for which we have polynomial-time
algorithns.



 The problems in the picture that are IN NP but not in P
are ones that we’re not sure about: -

* there Is no known polynomial-time algorithm; —
e but no proof of intractability.




 \We know that P € NP. But much more than that we
don’t know.

 The definition of NP allows for the Inclusion of
problems that may not be In P. But it may tum out that
there are no such problems and that P = NP



The Class P.and NP



P and NP problems

® Assume we have a “conventional”
deterministic computer.

@ The class of problems which can be solved on
such a computer in polynomial time is called P (for
Folynomial).

® Suppose we have a (theorefical) non-
deterministic computer that can “guess™ the
rght option when faced with choices.
® The class of problems which can be solved on a

nan=deterministic computer in polynomial time is
called WP (for Mondeterministic Polynomial).



o Partition Given A= {ay,... ,a,} each o; with s(a;) € [ s there:a.§ C [n] st.
E.‘E};H(ﬂ'i) = Ejgﬁﬂ(ﬂj)?
certificate: 5. To verify check in O(n) that )z s(0i) = )5 ;)

Theorem: P C NP,

The US3 10° Question: 8 £ XP.or P = NP !
http: /www.claymath.org/prizeproblems/ pvsnp.htm]



Is NP larger than P?

® Clearly, If a problem is in P it 15 also in NF.
But what about the other way round?

® Cne might expect that such non-cdeterministic

machines are more powerful ithat is, that NP is larger
than F1.

® However, no one has found a single probiem

that 1= proven to Be in NF but not in P.

® That is, ifaproblemisin NP, it might or might not be
N F, sofar as we know at preseant.

® [n theory there could be efficient solutions 1o
“hard” problems such as boolean satistiability.,




co-NP
NP

®

One of the central (and widely and intensively studied 30 years) problems of
(theoretical) computer science s to prove that

(@) PLINP  (b) NP L] co-NP.

» All evidence indicates that these conjectures are true.

» Disproving any of these two conjectures would not only be considered truly
spectacular, but would also come as a tremendous surprise (with a variety of far-
reaching counterintuitive consequences).

NP-complete: Collection Z of problems is NP-complete if (a) it is NPand (b) if
polynomial-time algorithm existed for solving problems in Z, then P=NP.



NP-completeness

A problem A € NP is NPecomplete if for every Bin NP, B <.A. Iffor Bin NP,
B < Abut B¢ NP then Aissaid to be NPhard

Lemma: If Ais NP-complete, the A in P iff P = NP,

S0 once we prove that a problem is NP-complete, either A has no efficient
algorithm or all NP problemas are in P,

Majonty conjectures.P £ NP

10/10/2019 SNSCE/CSE/CS8501/TOC/Ms. FMargret Sharmila



Some NP-complete problems ‘

® [Vany practical problems are NP-complate.

@ Given a linear program (a set of linear inequalities)
15 there an integer solution © the variables?

@ Given a set of integers, can they be divided into
twi sets whose sum is equal’

® Given two identical processors, a sel of tasks of
varying l=nath, and a deadline, can the tasks be
scheduled so that they finish before the deadline?

@ [fthere is an efficient solution to any of these, then
all MF problems have efficient solutions! This
would have a major impact.




P=NP or P=NP?

® Froving whether P=NF or P=NF Is one of the
maost Important open problems in computer
sclence.

@ [f someone showed that P=RMP, then many “hard”

problems (e The MP-complete problems) would be
tractable.

® How
that
A[al
ane

ever most computer scientists beligve
PP, largely because there are many
ams which are in NP but for which no
has found an efficient solution.

@ That s, absence of evidence t_hﬂt" F=MF counts as

=

idence that PARE




Summary: P and NP

®5ome problems seem to be intrinsically
very complex (MP). The only “efficient”
known solutions require a non-
deterministic computer.

® At present we have no proof that such
problems do not have efficient solutions
(they could be in P).

®Some NF problems are significant in the

sense that if they are in P, then so are
all NP problems.




