
 

 

 

 

CS3401-ALGORITHMS 

UNIT 1 

 
 

TimeandSpaceComplexity 

Time complexity is a measure of how long an algorithm takes to run as a function of the size of the 

input. It is typically expressed using big O notation, which describes the upper bound on the growth 

of the time required by the algorithm. For example, an algorithm with a time complexity of O(n) 

takes longer to run as the input size (n) increases. 

Therearedifferenttypesoftimecomplexities: 

 O(1) or constant time: the algorithm takes the same amount of time to run regardless of the 

size of the input. 

 O(log n) or logarithmic time: the algorithm's running time increases logarithmically with the 

size of the input. 

 O(n)orlineartime:thealgorithm'srunningtimeincreaseslinearlywiththesizeoftheinput. 

 O(n log n) or linear logarithmictime: the algorithm's running time increases linearly with the 

size of the input and logarithmically with the size of the input. 

 O(n^2) or quadratic time: the algorithm's running time increases quadratically with the size 

of the input. 



 

 

 
 

 
 O(2^n) or exponential time: the algorithm's running time increases exponentially with the 

size of the input. 

Space complexity, on the other hand, is a measure of how much memory an algorithm uses as a 

function of the size of the input. Like time complexity, it is typically expressed using big O notation. 

For example, an algorithm with a space complexity of O(n) uses more memory as the input size (n) 

increases. Space complexities are generally categorized as: 

 O(1) or constant space: the algorithm uses the same amount of memory regardless of the 

size of the input. 

 O(n) or linear space: the algorithm's memory usage increases linearly with the size of the 

input. 

 O(n^2) or quadratic space: the algorithm's memory usage increases quadratically with the 

size of the input. 

 O(2^n)orexponentialspace:thealgorithm'smemoryusageincreasesexponentiallywith the 
 
 
 
 
 
 
 
 
 
 
 

 
 Big O notation (O(f(n))) provides an upper bound on the growth of a function. It describesthe 

worst-case scenario for the time or space complexity of an algorithm. For example, an 

algorithm with a time complexity of O(n^2) means that the running time of the algorithm is 

at most n^2, where n is the size of the input. 

 Big Ω notation (Ω(f(n))) provides a lower bound on the growth of a function. It describes the 

best-case scenario for the time or space complexity of an algorithm. For example, an 

algorithm with a space complexity of Ω(n) means that the memory usage of the algorithm is 

at least n, where n is the size of the input. 

 Big Θ notation (Θ(f(n))) provides a tight bound on the growth of a function. It describes the 

average-case scenario for the time or space complexity of an algorithm. For example, an 

algorithm with a time complexity of Θ(n log n) means that the running time of the algorithm 

is both O(n log n) and Ω(n log n), where n is the size of the input. 

It's important to note that the asymptotic notation only describes the behavior of the function for 

large values of n, and does not provide information about the exact behavior of the function for 

small values of n. Also, for some cases, the best, worst and average cases can be the same, in that 

case the notation will be simplified to O(f(n)) = Ω(f(n)) = Θ(f(n)) 



 

 

 
 

 
Additionally, these notations can be used to compare the efficiency of different algorithms, where a 

lower order of the function is considered more efficient. For example, an algorithm with a time 

complexity of O(n) is more efficient than an algorithm with a time complexity of O(n^2). 

It's also worth mentioning that asymptotic notation is not only limited to time and space complexity 

but can be used to express the behavior of any function, not just algorithms. 

Thereare three asymptoticnotations that areused torepresent the time complexityof analgorithm. 

They are: 

 
 
 
 
 
 

 
 Input:Hereourinputisanintegerarrayofsize"n"andwehaveoneinteger"k"thatwe need to 

search for in that array. 

 Output:Iftheelement"k"isfoundinthearray,thenwehavereturn1,otherwisewehave 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
//for-looptoiteratewitheachelementinthe array 

for (inti = 0;i <n;++i) 

{ 

//checkifithelement isequalto"k"ornot 

if(arr[i]==k) 

return1;//return1,ifyoufind"k" 



 

 

 
 

 
} 

return0;//return0,ifyoudidn'tfind"k" 

} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 If the input array is [1, 2, 3, 4, 5] and you want to find if "1" is present in the array or not, 

thenthe if-condition ofthe code willbe executed 1 time andit willfind that the element 1 is 

there in the array. So, the if-condition will take 1 second here. 

 If the input array is [1, 2, 3, 4, 5] and you want to find if "3" is present in the array or not, 

then the if-condition of the code will be executed 3 times and it will find that the element 3is 

there in the array. So, the if-condition will take 3 seconds here. 

 If the input array is [1, 2, 3, 4, 5] and you want to find if "6" is present in the array or not, 

then the if-condition of the code will be executed 5 times and it will find that the element 6is 

not there in the array and the algorithm will return 0 in this case. So, the if-condition will 

take 5 seconds here. 

As we can see that for the same input array, we have different time for different values of "k". 

So,this can be divided into three cases: 

 Best case: This is the lower bound on running time of an algorithm. We must know the case 

that causes the minimum number of operations to be executed. In the above example, our 

array was [1, 2, 3, 4, 5] and we are finding if "1" is present in the array or not. So here, after 

only one comparison, we will get that ddelement is present in the array. So, this is the best 

case of our algorithm. 



 

 

 
 

 
 Average case: We calculate the running time for all possible inputs, sum all the calculated 

values and divide the sum by the total number of inputs. We must know (or predict) 

distribution of cases. 

 Worst case: This is the upper bound on running time of an algorithm. We must know the 

case that causes the maximum number of operations to be executed. In our example, the 

worst case can be if the given array is [1, 2, 3, 4, 5] and we try to find if element "6" is 

present in the array or not. Here, the if-condition of our loop will be executed 5 times and 

then the algorithm will give "0" as output. 

So, we learned about the best, average, and worst case of an algorithm. Now, let's get back to the 

asymptotic notation where we saw that we use three asymptotic notation to represent the 

complexity of an algorithm i.e. Θ Notation (theta), Ω Notation, Big O Notation. 

NOTE:Intheasymptoticanalysis,wegenerallydealwithlargeinput size. 

ΘNotation(theta) 

The Θ Notation is used to find the average bound of an algorithm i.e. it defines an upper bound anda 

lower bound, and your algorithm will lie in between these levels. So, if a function is g(n), then the 

theta representation is shown as Θ(g(n)) and the relation is shown as: 

Θ(g(n))={f(n):thereexistpositiveconstantsc1,c2andn0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ΩNotation 

The Ω notation denotes the lower bound of an algorithm i.e. the time taken by the algorithm can'tbe 

lower thanthis.Inotherwords, thisisthefastesttimeinwhichthealgorithmwillreturn aresult. 



 

 

 
 

 
Its the time taken by the algorithm when provided with its best-case input. So, if a function is g(n), 

then the omega representation is shown as Ω(g(n)) and the relation is shown as: 

Ω(g(n))={f(n):thereexistpositiveconstantscandn0 such 

that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0 } 

Theaboveexpressioncan bereadas omegaofg(n)isdefinedassetofallthe functionsf(n)forwhich there 

exist some constants c and n0 such that c*g(n) is less than or equal to f(n), for all n greaterthan or 

equal to n0. 

iff(n)=2n²+3n+1 and 

g(n) = n² 

thenfor c=2 andn0=1,wecansaythatf(n)=Ω(n²) 

 

BigONotation 

The Big Onotation definesthe upper bound ofany algorithm i.e.you algorithm can't take more time 

than this time. In other words, we can say that the big O notation denotes the maximum time taken 

by an algorithm or the worst-case time complexity of an algorithm. So, big O notation is the most 

used notation for the time complexity of an algorithm. So, if a function is g(n), then the big O 

representation of g(n) is shown as O(g(n)) and the relation is shown as: 

O(g(n))={f(n):thereexistpositiveconstantscandn0 such 

that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0 } 

Theabove expression can be read as Big O of g(n) is defined as a set offunctions f(n) for which there 

exist some constants c and n0 such that f(n) is greater than or equal to 0 and f(n) is smaller than or 

equal to c*g(n) for all n greater than or equal to n0. 

iff(n)=2n²+3n+1 and 

g(n) = n² 

thenfor c=6 andn0=1,wecansaythatf(n)=O(n²) 



 

 

 
 
 

 

 

BigOnotationexampleofAlgorithms 

Big O notation is the most used notation to express the time complexity of an algorithm. In this 

section of the blog, we will find the big O notation of various algorithms. 

Example1:Findingthesumofthefirstn numbers. 

In this example, we have to find the sum of first n numbers. For example, if n = 4, then our output 

should be 1 + 2 + 3 + 4 = 10. If n = 5, then the ouput should be 1 + 2 + 3 + 4 + 5 = 15. Let's try various 

solutions to this code and try to compare all those codes. 

O(1)solution 

//functiontakinginput"n" 

intfindSum(intn) 

{ 

returnn*(n+1)/2;//thiswilltakesomeconstanttimec1 

} 

In the above code, there is only one statement and we know that a statement takes constant time 

for its execution. The basic idea is that if the statement is taking constant time, then it will take the 

same amount of time for all the input size and we denote this as O(1) . 

O(n)solution 

In this solution, we will run a loop from 1 to n and we will add these values to a variable named 

"sum". 

//functiontakinginput"n" 

intfindSum(intn) 

{ 

intsum=0;// ------------------- >ittakessomeconstanttime"c1" 

for(inti= 1;i <=n; ++i)//--> herethecomparisionand increment willtakeplace ntimes(c2*n)and the 

creation of i takes place with some constant time 

sum=sum+i;// -------------- >thisstatementwillbeexecutedntimesi.e. c3*n 



 

 

 
 

 
returnsum;// ------------------ >ittakessomeconstanttime"c4" 

} 

/* 

* Totaltimetaken=timetakenbyallthestatmentstoexecute 

* here in our example we have 3 constant time taking statements i.e. "sum = 0", "i = 0", and "return 

sum", so we can add all the constatnts and replacce with some new constant "c" 

* apart fromthis, we havetwo statementsrunning n-timesi.e. "i< n(in realn+1)"and "sum= sum+ i" i.e. 

c2*n + c3*n = c0*n 

* Totaltimetaken=c0*n+c 

*/ 

The big O notation of the above code is O(c0*n) + O(c), where c and c0 are constants. So,the overall 

time complexity can be written as O(n) . 

O(n²)solution 

In this solution, we will increment the value of sum variable "i" times i.e. for i = 1, the sum variable 

will be incremented once i.e. sum = 1. For i = 2, the sum variable will be incremented twice. So, let's 

see the solution. 

//functiontakinginput"n" 

intfindSum(intn) 

{ 

intsum=0;// ---------------------- >constanttime 

for(inti= 1;i<=n;++i) 

for(intj=1;j<=i;++j) 

sum++;// ------------------ >itwillrun[n*(n+1)/2] 

returnsum;// --------------------- >constant time 

} 

/* 

* Totaltimetaken=timetakenbyallthestatmentstoexecute 

* thestatement thatisbeingexecutedmostofthetime is"sum++"i.e.n*(n+1)/2 

* So, total complexity will be: c1*n² + c2*n + c3 [c1 is for the constant terms of n², c2 is for the 

constant terms of n, and c3 is for rest of the constant time] 

*/ 

The big O notation of the above algorithm is O(c1*n²) +O( c2*n) + O(c3). Since we take the higher 

order of growth in big O. So, our expression will be reduced to O(n²) . 



 

 

 
 

 
So,until now,we saw 3 solutions for the same problem. Now, whichalgorithm will you prefer to use 

whenyouarefindingthesumoffirst "n"numbers?If youranswerisO(1)solution,thenwehaveone bonus 

section for you at the end of this blog. We would prefer the O(1) solution because the time taken by 

the algorithm will be constant irrespective of the input size. 

 

 
RecurrenceRelation 

A recurrence relation is a mathematical equation that describes the relation between the input size 

and the running time ofa recursive algorithm.It expressesthe running time of aproblem intermsof 

the running time of smaller instances of the same problem. 

ArecurrencerelationtypicallyhastheformT(n)=aT(n/b)+f(n)where: 

 T(n)istherunningtimeofthealgorithmonaninputofsizen 

 aisthenumberofrecursivecallsmadebythealgorithm 

 bisthesizeoftheinputpassedtoeachrecursivecall 

 f(n)isthetimerequiredtoperformanynon-recursiveoperations 

The recurrence relation can be used to determine the time complexity of the algorithm using 

techniques such as the Master Theorem or Substitution Method. 

For example, let's consider the problem of computing the nth Fibonacci number. A simple recursive 

algorithm for solving this problem is as follows: 

 
 

 
Fibonacci(n) 

if n <= 1 

return nelse 

returnFibonacci(n-1)+Fibonacci(n-2) 

The recurrencerelationforthisalgorithmisT(n)=T(n-1)+T(n-2)+ O(1),whichdescribesthe running time of 

the algorithm in terms of the running time of the two smaller instances of the problem with input 

sizes n-1 and n-2. Using the Master Theorem, it can be shown that the time complexity of this 

algorithm is O(2^n) which is very inefficient for large input sizes. 

 

 

Searching 

Searching is the process of fetching a specific element in a collection of elements. The collection can 

be an array or a linked list. If you find the element in the list, the process is considered successful, 

and it returns the location of that element. 

Two prominent search strategies are extensively used to find a specific item on a list. However, the 

algorithm chosen is determined by the list's organization. 

https://www.simplilearn.com/tutorials/data-structure-tutorial/linked-list-in-data-structure


 

 

 
 

 
1. LinearSearch 

2. BinarySearch 

3. Interpolationsearch 
 

 
LinearSearch 

Linear search, often known as sequential search, is the most basic search technique. In this type of 

search,wegothroughtheentirelistandtrytofetchamatchforasingleelement.Ifwe find a match, then the 

address of the matching target element is returned. 

On the other hand, if the element is not found, then it returns a NULL value. 

Followingisastep-by-stepapproachemployedtoperformLinearSearchAlgorithm. 

 

 
 

 
Theproceduresforimplementinglinearsearchareasfollows: 

Step1:First,readthesearchelement(Targetelement)inthearray. 

Step2:Inthesecondstepcomparethesearchelementwiththefirstelementinthearray. 

Step3:Ifbotharematched,display"Targetelementisfound"andterminatetheLinearSearch function. 

Step 4: If both are not matched, compare the search element with the next element in the array. 

Step 5: In this step, repeat steps 3 and 4 until the search (Target) element is compared with the last 

element of the array. 

Step 6 - If the last element in the list does not match, the Linear Search Function will be terminated, 

and the message "Element is not found" will be displayed. 

 
AlgorithmandPseudocodeofLinearSearchAlgorithm Algorithm 

of the Linear Search Algorithm 

 
PseudocodeofLinearSearchAlgorithm 

 

Start 

linear_search(Array,value) 

LinearSearch(ArrayArr,Value a)//Arristhenameofthe array,andaisthesearchedelement. Step 1: Set i 

to 0 // i is the index of an array which starts from 0 

Step2:ifi>nthengotostep7//nisthe numberofelementsinarray Step 3: if 

Arr[i] = a then go to step 6 

Step4:Setitoi+1 

Step5:Gotostep2 

Step6:Printelementafoundatindexiandgotostep8 Step 7: 

Print element not found 

Step8:Exit 

https://www.simplilearn.com/binary-search-algorithm-article


 

 

 
 

 

 
ExampleofLinearSearchAlgorithm 

Consider anarrayofsize7withelements13,9,21,15,39,19,and27thatstartswith0andends with size minus 

one, 6. 

Searchelement=39 
 

 

 
 

 
Step1:Thesearchedelement39iscomparedtothefirstelementofanarray,whichis13. 

 

 

 
Thematchisnotfound,younowmoveontothenextelementandtrytoimplement acomparison. Step 2: 

Now, search element 39 is compared to the second element of an array, 9. 
 

 

 

 
Step3:Now,searchelement39iscomparedwiththethirdelement,whichis21. 

 

 

 

 
Again,boththeelementsarenotmatching,youmoveontothenextfollowingelement. Step 4; 

Next, search element 39 is compared with the fourth element, which is 15. 
 

 

Foreachelementinthearray 

If(searchedelement==value) 

Return'sthesearchedelementlocation end 

if 

endfor 

end 



 

 

 
 
 
 

 
Step5:Next,searchelement39iscomparedwiththefifthelement39. 

 

 

 

 
Aperfectmatchisfound,displaytheelementfoundatlocation4. 

 
TheComplexityofLinearSearchAlgorithm 

Three different complexities faced while performing Linear Search Algorithm, they are mentioned as 

follows. 

1. BestCase 

2. WorstCase 

3. AverageCase 

BestCase Complexity 

 Theelementbeingsearchedcouldbefoundinthefirstposition. 

 Inthiscase,thesearchendswithasinglesuccessful comparison. 

 Thus,inthebest-casescenario,thelinearsearchalgorithmperformsO(1)operations. 

WorstCaseComplexity 

 Theelementbeingsearchedmaybeatthelastpositioninthearrayornotat all. 

 Inthefirstcase,thesearchsucceedsin‘n’comparisons. 

 Inthenextcase,thesearchfailsafter‘n’ comparisons. 

 Thus,intheworst-casescenario,thelinearsearchalgorithmperformsO(n)operations. 

AverageCaseComplexity 

Whentheelementto be searchedisinthe middleofthe array,the averagecase ofthe LinearSearch 

Algorithm is O(n). 

SpaceComplexityofLinearSearchAlgorithm 

Thelinearsearchalgorithmtakesupnoextraspace;itsspacecomplexityisO(n)foranarrayofn elements. 

ApplicationofLinearSearchAlgorithm 

Thelinearsearchalgorithmhasthefollowingapplications: 

 Linearsearchcanbeappliedtobothsingle-dimensionalandmulti-dimensionalarrays. 

 Linearsearchiseasytoimplementandeffectivewhenthearraycontainsonlyafewelements. 

 LinearSearchisalsoefficientwhenthesearchisperformedtofetchasinglesearchinan unordered-

List. 

CodeImplementationofLinearSearchAlgorithm 

#include<stdio.h> 

#include<stdlib.h> 

#include<conio.h>

int main() 

{ 

intarray[50],i,target,num; 

https://www.simplilearn.com/tutorials/data-structure-tutorial/time-and-space-complexity


 

 

 
 

 

 

BinarySearch 

 
Binary search is the search technique that works efficiently on sorted lists. Hence, to search an 

element into some list using the binary search technique, we must ensure that the list is sorted. 

Binary search follows the divide and conquer approach in which the list is divided into two halves, 

and the item is compared with the middle element of the list. If the match is found then, 

thelocationofthe middle elementisreturned.Otherwise,wesearchintoeitherofthehalvesdepending 

upon the result produced through the match 

NOTE: Binary search can be implemented on sorted array elements. If the list elements are not 

arranged in a sorted manner, we have first to sort them. 

 
Algorithm 

1. Binary_Search(a,lower_bound, upper_bound, val) //'a' is the given array,'lower_bound' is t 

he index ofthe first array element, 'upper_bound'is the indexof the last array element, 'val' is 

the value to search 

2. Step1:setbeg=lower_bound,end=upper_bound,pos=-1 

3. Step2:repeatsteps3 and4 whilebeg<=end 

4. Step3:setmid=(beg+ end)/2 

5. Step4:ifa[mid]=val 

6. setpos =mid 

7. printpos 

8. gotostep6 

9. elseifa[mid]>val 

10. setend= mid-1 

11. else 

12. setbeg= mid+1 

13. [endofif] 

14. [endof loop] 

15. Step5:if pos=-1 

printf("Howmanyelementsdoyouwantinthearray"); scanf("%d",&num); 

printf("Enterarrayelements:"); 

for(i=0;i<num;++i) 

scanf("%d",&array[i]); 

printf("Enterelementtosearch:"); 

scanf("%d",&target); 

for(i=0;i<num;++i) 

if(array[i]==target) 

break; 

if(i<num) 

printf("Targetelementfoundatlocation%d",i); else 

printf("Targetelementnotfoundinanarray"); return 

0; 

} 



 

 

 
 

 
16. print"valueisnotpresentinthearray" 

17. [endofif] 

18. Step6:exit 

Procedurebinary_search 

A←sortedarray 

n←sizeof array 

x←valuetobesearched Set 

lowerBound = 1 

SetupperBound=n 

while x not found 

ifupperBound<lowerBound EXIT: 

x does not exists. 

setmidPoint=lowerBound+(upperBound-lowerBound)/2 if 

A[midPoint] < x 

setlowerBound=midPoint+1 if 

A[midPoint] > x 

setupperBound=midPoint-1 if 

A[midPoint] = x 

EXIT:xfoundatlocationmidPoint end 

while 

end procedure 

 
WorkingofBinarysearch 

To understand the working of the Binary search algorithm, let's take a sorted array. It will be easy to 

understand the working of Binary search with an example. 

Therearetwomethodstoimplementthebinarysearchalgorithm- 

o Iterativemethod 

o Recursivemethod 

Therecursivemethodofbinarysearchfollowsthedivideandconquerapproach. Let the 

elements of array are - 
 

Lettheelementtosearchis,K= 56 

Wehavetousethebelowformulatocalculatethemidofthearray- 

1. mid=(beg+end)/2 

So, in the given array - 

 
beg= 0 

end=8 

mid=(0+ 8)/2= 4.So,4is themidofthe array. 



 

 

 
 

 

 
 

 

Now,the elementtosearchisfound.Soalgorithmwillreturntheindexoftheelementmatched. Binary 

Search complexity 

Now, let's see the time complexity of Binary search in the best case, average case, and worst 

case.We will also see the space complexity of Binary search. 

1. TimeComplexity 

Case TimeComplexity 

BestCase O(1) 

AverageCase O(logn) 

WorstCase O(logn) 

o Best Case Complexity - In Binary search, best case occurs when the element to search is 

found in first comparison, i.e., when the first middle element itself is the element to be 

searched. The best-case time complexity of Binary search is O(1). 

o AverageCaseComplexity-TheaveragecasetimecomplexityofBinarysearchisO(logn). 

o Worst Case Complexity - In Binary search, the worst case occurs, when we have to keep 

reducing the search space till it has only one element. The worst-case time complexity of 

Binary search is O(logn). 

2. Space Complexity 

o ThespacecomplexityofbinarysearchisO(1). 
 

 
ImplementationofBinarySearch 

Program:WriteaprogramtoimplementBinarysearchinClanguage. 

1. #include<stdio.h> 

2. intbinarySearch(inta[],intbeg,intend,intval) 

3. { 

4. intmid; 

5. if(end>=beg) 

O(1) SpaceComplexity 



 

 

 
 

 
6. { mid=(beg+end)/2; 

7. /*ifthe itemtobe searchedispresentatmiddle*/ 

8. if(a[mid]== val) 

9. { 

10. returnmid+1; 

11. } 

12.  /* if the item to be searched is smaller than middle, thenit can onlybe in left subarra y 

*/ 

13. elseif(a[mid]<val) 

14. { 

15. returnbinarySearch(a,mid+1,end,val); 

16. } 

17.  /*if the itemto be searchedis greater than middle,thenit can onlybe in right subarr ay 

*/ 

18. else 

19. { 

20. returnbinarySearch(a,beg,mid-1,val); 

21. } 

22. } 

23. return-1; 

24.} 

25. intmain(){ 

26. inta[]={11,14,25,30,40,41,52,57,70};//givenarray 

27. intval= 40;//valuetobesearched 

28. intn=sizeof(a)/sizeof(a[0]);//sizeofarray 

29. intres=binarySearch(a,0,n-1,val);//Storeresult 

30. printf("Theelementsofthearrayare-"); 

31. for(inti =0;i<n;i++) 

32. printf("%d",a[i]); 

33. printf("\nElementtobesearchedis-%d",val); 

34. if(res==-1) 

35. printf("\nElementisnotpresentinthearray"); 

36. else 

37. printf("\nElementispresentat%dpositionofarray",res); 

38. return0; 

39.} 

Output 

 
InterpolationSearch 

Interpolation search is an improved variant of binary search. This search algorithm works on the 

probing position of the required value. For this algorithm to work properly, the data collectionshould 

be in a sorted form and equally distributed. 

Binary search has a huge advantage of time complexity over linear search. Linear search has worst- 

case complexity of Ο(n) whereas binary search has Ο(log n). 



 

 

 
 

 
There are cases where the location of target data may be known in advance. For example, in case of 

a telephone directory, if we want to search the telephone number of Morphius. Here, linear search 

and even binary search will seem slow as we can directly jump to memory space where the names 

start from 'M' are stored. 

PositionProbinginInterpolationSearch 

Interpolation search finds a particular item by computing the probe position. Initially, the probe 

position is the position of the middle most item of the collection. 

 

If a match occurs, then the index of the item is returned. To split the list into two parts, we use the 

following method − 

mid=Lo+((Hi-Lo)/(A[Hi]-A[Lo]))* (X-A[Lo]) 

 
where 

−A=list 

Lo=Lowestindexofthelist Hi= 

Highestindexofthe list 

A[n]=Valuestoredatindexninthelist 

 
If the middle item is greater than the item, then the probe position is again calculated in the sub- 

array to the right of the middle item. Otherwise, the item is searched in the subarray to the left of 

the middle item. Thisprocess continueson the sub-array as welluntil the size ofsubarray reducesto 

zero. 

Runtime complexity of interpolation search algorithm is Ο(log (log n)) as compared to Ο(log n) ofBST 

in favorable situations. 

Algorithm 

AsitisanimprovisationoftheexistingBSTalgorithm,wearementioningthestepstosearchthe 'target' data 

value index, using position probing − 

Step1−Startsearchingdatafrommiddleofthelist. 

Step2−Ifitisamatch,returntheindexoftheitem,andexit. Step 3 − 

If it is not a match, probe position. 

Step4−Dividethelistusingprobingformulaandfind thenewmidle. Step 5 − 

If data is greater than middle, search in higher sub-list. 

Step6−Ifdataissmallerthanmiddle,searchinlowersub-list. Step 7 

− Repeat until match. 

 

 
PseudocodeA
→Arraylist 
N→Size ofA 
X→TargetValue 

ProcedureInterpolation_Search() 

Set Lo→0 



 

 

 
 

 
Set Mid → -1 
SetHi→N-1 

WhileXdoesnotmatch 
 

ifLoequalstoHiORA[Lo]equalsto A[Hi] 
EXIT:Failure,Targetnotfound 

end if 
 

SetMid=Lo+ ((Hi-Lo)/ (A[Hi]-A[Lo]))*(X- A[Lo]) 
 

ifA[Mid]=X 
EXIT:Success,TargetfoundatMid else 
ifA[Mid]<X 

SetLotoMid+1 
else if A[Mid] > X 

Set Hi to Mid-1 
endif 

end if 
End While 

EndProcedure 

ImplementationofinterpolationinC 

 
#include<stdio.h>#defi

ne MAX 10 

//arrayofitemsonwhichlinearsearchwillbeconducted. int 

list[MAX] = { 10, 14, 19, 26, 27, 31, 33, 35, 42, 44 }; 

intfind(intdata){ int 

lo = 0; 

inthi=MAX-1; int 

mid = -1; 

intcomparisons=1; 

int index = -1; 

while(lo <= hi) { 

printf("\nComparison%d\n",comparisons); 

printf("lo:%d,list[%d]=%d\n",lo,lo,list[lo]); 

printf("hi:%d,list[%d]=%d\n",hi,hi, list[hi]); 

 
comparisons++; 

//probethemidpoint 

mid=lo+(((double)(hi-lo)/(list[hi]-list[lo]))*(data-list[lo])); 

printf("mid = %d\n",mid); 

// data found 

if(list[mid]==data){ 

index=mid; 

break; 



 

 

 
 

 
}else{ 

if(list[mid]<data){ 

//ifdataislarger,dataisinupperhalf lo = 

mid + 1; 

}else{ 

//ifdataissmaller,dataisinlowerhalf hi = 

mid - 1; 

} 

} 

} 

 
printf("\nTotalcomparisonsmade:%d",--comparisons); return 

index; 

} 

intmain(){ 

//find location of 33 

intlocation=find(33); 

 
//ifelementwasfound 

if(location != -1) 

printf("\nElementfoundatlocation:%d",(location+1)); else 

printf("Elementnotfound."); 

return 0; 

} 

Ifwecompileandruntheabove program,itwillproducethefollowingresult− Output 

Comparison1 

lo:0,list[0]= 10 

hi:9,list[9]=44 

mid=6 

 
Total comparisons made: 1 

Elementfoundatlocation:7 

 

 
TimeComplexity 

 Bestcase-O(1) 

The best-case occurs when the target is found exactly as the first expected position 

computed using the formula. As we only perform one comparison, the time complexity is 

O(1). 

 
 Worst-case-O(n) 

Theworstcaseoccurswhenthegivendatasetisexponentiallydistributed. 

 
 Averagecase-O(log(log(n))) 

If the data set is sorted and uniformly distributed, then it takes O(log(log(n))) time as on an 

average (log(log(n))) comparisons are made. 



 

 

 
 
 
 

 
SpaceComplexity 

O(1)asnoextraspaceisrequired. 

 

PatternSearch 
Pattern Searching algorithms are used to find a pattern or substring from another bigger string.There 

are different algorithms. The main goal to design these type of algorithms to reduce the time 

complexity. The traditional approach may take lots of time to complete the pattern searching taskfor 

a longer text. 

Herewewillseedifferentalgorithmstoget abetterperformanceofpatternmatching. In this 

Section We are going to cover. 

 Aho-CorasickAlgorithm 

 AnagramPatternSearch 

 BadCharacterHeuristic 

 BoyerMooreAlgorithm 

 EfficientConstructionofFiniteAutomata 

 kasai’sAlgorithm 

 Knuth-Morris-PrattAlgorithm 

 Manacher’sAlgorithm 

 NaivePatternSearching 

 Rabin-KarpAlgorithm 

 SuffixArray 

 TrieofallSuffixes 

 ZAlgorithm 

 
Naïve pattern searching is the simplest method among other pattern searching algorithms. It checks 

for all character of the main string to the pattern. This algorithm is helpful for smaller texts. It does 

not need any pre-processing phases. We can find substring by checking once for the string. It also 

does not occupy extra space to perform the operation. 

The time complexity of Naïve Pattern Search method is O(m*n). The m is the size of pattern and n is 

the size of the main string. 

 
InputandOutput 

Input: 

MainString:“ABAAABCDBBABCDDEBCABC”,pattern:“ABC” 

Output: 

Pattern found at position: 4 

Patternfoundatposition:10 

Patternfoundatposition:18 

 

Algorithm 
naive_algorithm(pattern,text) 

Input−Thetextandthepattern 

Output−locations,wherethepatternispresentinthetext 

Stpaart _len:=patternSize 



 

 

 
 

 
str_len:=string size 

fori:=0to(str_len-pat_len),do for j 

:= 0 to pat_len, do 

iftext[i+j]≠pattern[j],then 

break 

ifj==patLen,then 

displaythepositioni,astherepatternfound 

End 

 

ImplementationinC 
#include <stdio.h> 

#include<string.h> 

int main (){ 

chartxt[]="tutorialsPointisthebestplatformforprogrammers"; char 

pat[] = "a"; 

intM=strlen(pat); int 

N = strlen (txt); 

for(inti=0;i<=N-M;i++){ int j; 

for (j = 0; j < M; 

j++)if(txt[i+j]!=pat[j

]) 

break; 

if(j==M) 

printf ("Pattern matches at index %d 

",i); 

} 

return0; 

} 

Output 

Pattern matches at 6 

Patternmatchesat25 

Patternmatchesat 39 

 

 

Rabin-Karpmatchingpattern 

Rabin-Karp is another pattern searching algorithm. It is the string matching algorithm that was 

proposed by Rabin and Karp to find the pattern in a more efficient way. Like the Naive Algorithm, it 

alsochecksthe pattern bymoving the window oneby one,but withoutchecking allcharactersforall 

cases, it finds the hash value. When the hash value is matched, then only it proceeds to check each 

character. In this way, there is only one comparison per text subsequence making it a more efficient 

algorithm for pattern searching. 

Preprocessingtime-O(m) 

ThetimecomplexityoftheRabin-KarpAlgorithmisO(m+n),butfortheworstcase,itisO(mn). 

Algorithm 

rabinkarp_algo(text,pattern,prime) 

Input−Themaintextandthepattern.Anotherprimenumberoffindhash location 



 

 

 
 

 
Output−locations,wherethepatternisfound 

Start 

pat_len:=patternLength 

str_len := string Length 

patHash:=0 andstrHash:=0,h:=1 

maxChar:=totalnumberofcharactersincharacterset for 

index i of all character in the pattern, do 

h:=(h*maxChar)modprime 

forallcharacterindexiofpattern,do 

patHash:=(maxChar*patHash+pattern[i])modprime strHash 

:= (maxChar*strHash + text[i]) mod prime 

fori:=0to(str_len-pat_len),do if 

patHash = strHash, then 

forcharIndex:=0 topat_len-1,do 

iftext[i+charIndex]≠pattern[charIndex],then 

break 

ifcharIndex=pat_len, then 

printthelocationiaspatternfoundatiposition. if i < 

(str_len - pat_len), then 

strHash:=(maxChar*(strHash–text[i]*h)+text[i+patLen])modprime,then if 

strHash < 0, then 

strHash:=strHash+prime 

End 

 
ImplementationInC 

 
#include<stdio.h> 

#include<string.h>

int main (){ 

chartxt[80],pat[80]; 

int q; 

printf("Enterthecontainerstring"); 
scanf ("%s", &txt); 
printf("Enterthepatterntobesearched"); 
scanf ("%s", &pat); 
int d = 256; 

printf("Enteraprimenumber"); 
scanf ("%d", &q); 

intM=strlen(pat); 

int N = strlen (txt); 

int i, j; 

intp=0; 

int t = 0; 

inth=1; 

for(i=0;i<M-1;i++) h = 

(h * d) % q; 

for(i=0;i<M;i++){ 

p= (d*p+ pat[i])%q; 



 

 

 
 

 
t=(d*t+txt[i])%q; 

} 

for(i=0;i<=N-M;i++){ if (p 

== t){ 

for (j = 0; j < M; j++){ 

if(txt[i+j]!=pat[j]) 

break; 

} 

if (j == M) 

printf("Patternfoundatindex%d",i); 

} 

if(i<N-M){ 

t=(d*(t-txt[i]*h)+txt[i+M])%q; if (t < 0) 

t=(t+q); 

} 

} 

return0; 

} 

Output 

Enter the container string 

tutorialspointisthebestprogrammingwebsite 

Enter the pattern to be searched 

p 

Enteraprimenumber 3 

Pattern found at index 8 

Patternfoundatindex21 

 
nthisproblem,wearegiventwostringsatextandapattern.Ourtaskistocreateaprogramfor KMP algorithm 

for pattern search, it will find all the occurrences of pattern in text string. 

Here,wehavetofindalltheoccurrencesofpatternsinthetext. 

Let’stakeanexampletounderstandtheproblem, 

Input 

text=“xyztrwqxyzfg”pattern=“xyz” Output 

Foundatindex0 

Foundatindex7 

Here, we will discuss the solution to the problem using KMP (Knuth Morris Pratt) pattern searching 

algorithm, it will use a preprocessing string ofthe pattern whichwill be usedfor matching inthe text. 

And help’s in processing or finding pattern matches in the case where matching characters are 

followed by the character of the string that does not match the pattern. 

We will preprocess the pattern wand to create an array that contains the proper prefix and suffix 

from the pattern that will help in finding the mismatch patterns. 

ProgramforKMPAlgorithmforPatternSearching 

//CProgramforKMPAlgorithmforPatternSearching Example 

#include<iostream> 



 

 

 
 

 
#include<string.h>usin

gnamespacestd; 

voidprefixSuffixArray(char*pat,intM,int*pps){ int 

length = 0; 

pps[0] = 0;int 

i = 

1;while(i<M){ 

if(pat[i]==pat[length]){ 

length++; 

pps[i]=length; 

i++; 

}else{ 

if(length!=0) 

length=pps[length-1]; 

else { 

pps[i]=0; 

i++; 

} 

} 

} 

} 

voidKMPAlgorithm(char*text,char*pattern){ 

int M = strlen(pattern); 

intN=strlen(text); int 

pps[M]; 

prefixSuffixArray(pattern,M,pps); int 

i = 0; 

int j = 0; 

while(i<N){ 

if(pattern[j]==text[i]){ j++; 

i++; 

} 

if(j==M) 

{ 

printf("Foundpatternatindex%d",i-j); j 

= pps[j - 1]; 

} 

elseif(i<N&&pattern[j]!=text[i]){ if (j 

!= 0) 

j=pps[j-1]; 

else 

i =i+1; 

} 

} 

} 

intmain(){ 

chartext[]="xyztrwqxyzfg"; 



 

 

 
 

 
char pattern[] = "xyz"; 

printf("Thepatternisfoundinthetextatthefollowingindex:"); 

KMPAlgorithm(text, pattern); 

return0; 

} 

Output 

Thepatternisfoundinthetextatthefollowingindex− Found 

pattern at index 0 

Foundpatternatindex7 
 

 

Sorting:Insertionsort 

 
Insertionsort workssimilarto thesorting ofplayingcardsinhands. It isassumedthatthe first cardis 

already sorted in the card game, and then we select an unsorted card. If the selected unsorted cardis 

greater than the first card, it will be placed at the right side; otherwise, it will be placed at the left 

side. Similarly, all unsorted cards are taken and put in their exact place. 

 
The same approach is applied in insertion sort. The idea behind the insertion sort is that first take 

one element,iterate it through the sortedarray.Although it issimple to use,it is not appropriatefor 

large data sets as the time complexity of insertion sort in the average case and worst case is O(n2), 

where n is the number of items. Insertion sort is less efficient than the other sorting algorithms like 

heap sort, quick sort, merge sort, etc. 

 

Algorithm 
Thesimplestepsofachievingtheinsertionsortarelistedasfollows- 

Step1-Iftheelementisthefirstelement,assumethatitisalreadysorted.Return 1. 

Step2 - Pick the next element, and store it separately in a key. 

Step3-Now,comparethekeywithallelementsinthesortedarray. 

Step4 -Iftheelement inthesortedarrayissmallerthanthecurrent element,thenmove tothenext element. 

Else, shift greater elements in the array towards the right. 

Step5-Insertthevalue. 

Step6-Repeatuntilthearrayissorted. Working 

of Insertion sort Algorithm 

Now,let'sseetheworkingoftheinsertionsortAlgorithm. 

Tounderstandtheworkingoftheinsertionsortalgorithm,let'stakeanunsortedarray.Itwillbe easier to 

understand the insertion sort via an example. 

Lettheelementsofarrayare- 

 

Initially,thefirsttwoelementsarecomparedininsertionsort. 

 

Here, 31 is greater than 12. That means both elements are already in ascending order. So, for now, 

12 is stored in a sorted sub-array. 



 

 

 
 

 

 
Now,movetothenexttwoelementsandcompare them. 

Here,25issmallerthan31.So,31isnotatcorrectposition.Now,swap31with25.Alongwith swapping, 

insertion sort will also check it with all elements in the sorted array. 

For now, the sorted array has only one element, i.e. 12. So, 25 is greater than 12. Hence, the sorted 

array remains sorted after swapping. 

 
Now, two elements in the sorted array are 12 and 25. Move forward to the next elements that are31 

and 8. 

 

Both31and8are notsorted.So,swap them. 
 

Afterswapping,elements25and8areunsorted. 

 
So,swapthem. 

Now,elements12and8areunsorted. 

 
So,swapthem too. 

Now, the sorted array has three items that are 8, 12 and 25. Move to the next items that are 31 and 

32. 

 

Hence,theyarealreadysorted.Now,thesortedarrayincludes8,12,25and31. 

Movetothenextelementsthatare32and17. 



 

 

 
 

 

 
17issmallerthan32.So,swap them. 

Swappingmakes31and17unsorted.So,swapthemtoo. 

 

Now,swappingmakes25and17unsorted.So,performswappingagain. 

 

Now,thearrayiscompletelysorted. 

Insertion sort complexity 

1. TimeComplexity 

Case TimeComplexity 

BestCase O(n) 

AverageCase O(n2) 

WorstCase O(n2) 

o Best Case Complexity - It occurs when there is no sorting required, i.e. the array is already 

sorted. The best-case time complexity of insertion sort is O(n). 

o Average Case Complexity - It occurs when the array elements are in jumbled order that is 

not properly ascending and not properly descending. The average case time complexity of 

insertion sort is O(n2). 

o Worst Case Complexity - It occurs when the array elements are required to be sorted in 

reverse order. That means suppose you have to sort the array elements in ascending order, 

butitselementsareindescendingorder.Theworst-casetimecomplexityofinsertionsort is O(n2). 

2. Space Complexity 

SpaceComplexity O(1) 

Stable YES 

o ThespacecomplexityofinsertionsortisO(1).Itisbecause,ininsertionsort,anextra variable is 

required for swapping. 

Implementationofinsertionsort 

Program:WriteaprogramtoimplementinsertionsortinClanguage. 

1. #include<stdio.h> 

2.  

3. voidinsert(inta[],intn)/*functiontosortanaaywithinsertionsort*/ 

4. { 

5. inti,j, temp; 



 

 

 
 

 
6. for (i=1;i<n;i++){ 

7. temp= a[i]; 

8. j =i- 1; 

9.  

10.  while(j>=0 && temp<= a[j])/* Move the elements greater than temp to one position a 

head from their current position*/ 

11.  { 

12.  a[j+1]= a[j]; 

13.  j=j-1; 

14.  } 

15.  a[j+1]= temp; 
16. }  

17.} 

18. 

19. voidprintArr(inta[],intn)/*functiontoprintthearray*/ 

20. { 

21. inti; 

22. for(i=0;i <n;i++) 

23. printf("%d", a[i]); 

24.} 

25. 

26. intmain() 

27. { 
 

28.  inta[]={12,31,25,8,32,17 }; 

29.  intn=sizeof(a)/sizeof(a[0]); 

30.  printf("Beforesortingarrayelementsare- \n"); 

31.  printArr(a,n); 

32.  insert(a,n); 

33.  printf("\nAftersortingarrayelementsare-\n"); 

34.  printArr(a,n); 

35.   

36.  return0; 

37. }  

Output:   
 

 
 

 

HeapSort 

 
HeapSortAlgorithm 

Heap sort processes the elements by creating the min-heap or max-heap using the elements of the 

given array. Min-heap or max-heap represents the ordering of array in which the root element 

represents the minimum or maximum element of the array. 



 

 

 
 

 
Heapsortbasicallyrecursivelyperformstwomainoperations- 

o BuildaheapH,usingtheelementsof array. 

o Repeatedlydeletetherootelementoftheheapformedin1stphase. 

Aheapisacompletebinary tree,andthe binary treeisatreeinwhichthe nodecanhave theutmost two 

children. A complete binary tree is a binary tree in which all the levels except the last level, i.e., leaf 

node, should be completely filled, and all the nodes should be left-justified. 

Heapsort is a popular and efficient sorting algorithm. The concept of heap sort is to eliminate the 

elements one by one from the heap part of the list, and then insert them into the sorted part of the 

list. 

Algorithm 

1. HeapSort(arr) 

2. BuildMaxHeap(arr) 

3. fori=length(arr)to2 

4. swaparr[1]witharr[i] 

5. heap_size[arr]=heap_size[arr]?1 

6. MaxHeapify(arr,1) 

7. End 

BuildMaxHeap(arr) 

1. BuildMaxHeap(arr) 

2. heap_size(arr)=length(arr) 

3. fori=length(arr)/2to1 

4. MaxHeapify(arr,i) 

5. End 

MaxHeapify(arr,i) 

1. MaxHeapify(arr,i) 

2. L= left(i) 

3. R=right(i) 

4. ifL?heap_size[arr]andarr[L]>arr[i] 

5. largest=L 

6. else 

7. largest=i 

8. ifR?heap_size[arr]andarr[R]>arr[largest] 



 

 

 
 

 
9. largest=R 

10. iflargest!=i 

11. swaparr[i]witharr[largest] 

12. MaxHeapify(arr,largest) 

13. End 

WorkingofHeapsortAlgorithm 

In heap sort, basically, there are two phases involved in the sorting of elements. By using the heap 

sort algorithm, they are as follows - 

o Thefirststepincludesthecreationofaheapbyadjustingtheelementsofthearray. 

o After the creation of heap, now remove the root element of the heap repeatedly by shifting 

it to the end of the array, and then store the heap structure with the remaining elements. 
 

First,wehavetoconstructaheapfromthegivenarrayandconvertitintomaxheap. 
 

Afterconvertingthegivenheapintomaxheap,thearrayelementsare- 
 

Next, we have to delete the root element (89) from the max heap. To delete this node, we have to 

swap it with the last node, i.e. (11). After deleting the root element, we again have to heapify it to 

convert it into max heap. 
 

After swapping the array element 89 with 11, and converting the heap into max-heap, the elements 

of array are - 
 



 

 

 
 

 
In the next step, again, we have to delete the root element (81) from the max heap. To delete this 

node, wehave to swapit with thelast node, i.e. (54). After deletingthe rootelement, we again have to 

heapify it to convert it into max heap. 
 

After swapping the array element 81 with 54 and converting the heap into max-heap, the elements 

of array are - 
 

In the next step, we have to delete the root element (76) from the max heap again. To delete this 

node, we have to swap it with the last node, i.e. (9). After deleting the root element, we again have 

to heapify it to convert it into max heap. 
 

Afterswapping the array element 76with 9 and converting the heap into max-heap,the elementsof 

array are - 
 

In the next step, again we have to delete the root element (54) from the max heap. To delete this 

node, wehave to swapit with thelast node, i.e. (14). After deletingthe rootelement, we again have to 

heapify it to convert it into max heap. 
 

After swapping the array element 54 with 14 and converting the heap into max-heap, the elements 

of array are - 
 

In the next step, again we have to delete the root element (22) from the max heap. To delete this 

node, wehave to swapit with thelast node, i.e. (11). After deletingthe rootelement, we again have to 

heapify it to convert it into max heap. 



 

 

 
 

 

 

After swapping the array element 22 with 11 and converting the heap into max-heap, the elements 

of array are - 
 

In the next step, again we have to delete the root element (14) from the max heap. To delete this 

node, we have to swap it with the last node, i.e. (9). After deleting the root element, we again have 

to heapify it to convert it into max heap. 
 

Afterswapping the array element 14with 9 and converting the heap into max-heap,the elementsof 

array are - 
 

In the next step, again we have to delete the root element (11) from the max heap. To delete this 

node, we have to swap it with the last node, i.e. (9). After deleting the root element, we again have 

to heapify it to convert it into max heap. 
 

Afterswappingthearrayelement11with9,theelementsofarrayare- 
 

Now,heaphasonlyoneelementleft.Afterdeletingit,heapwillbeempty. 
 

Aftercompletionofsorting,thearrayelementsare- 
 

TimecomplexityofHeapsortinthebestcase,averagecase,andworst case 

1. TimeComplexity 
 

TimeComplexity Case 



 

 

 
 

 

BestCase O(nlogn) 

AverageCase O(nlogn) 

WorstCase O(nlogn) 

o Best Case Complexity - It occurs when there is no sorting required, i.e. the array is already 

sorted. The best-case time complexity of heap sort is O(n logn). 

o Average Case Complexity - It occurs when the array elements are in jumbled order that is 

not properly ascending and not properly descending. The average case time complexity of 

heap sort is O(n log n). 

o Worst Case Complexity - It occurs when the array elements are required to be sorted in 

reverse order. That means suppose you have to sort the array elements in ascending order, 

but itselements are in descending order. Theworst-case time complexityofheap sortis O(n 

log n). 

The time complexity of heap sort is O(n logn) in all three cases (best case, average case, and 

worstcase). The height of a complete binary tree having n elements is logn. 

2. Space Complexity 
 

SpaceComplexity O(1) 

Stable N0 

o ThespacecomplexityofHeapsortisO(1). 

Implementation of Heapsort 

Program:WriteaprogramtoimplementheapsortinC language. 

1. #include<stdio.h> 

2. /*functiontoheapifyasubtree.Here'i'isthe 

3. indexofrootnodeinarraya[],and'n'isthesizeofheap.*/ 

4. voidheapify(inta[],intn,inti) 

5. { 

6. intlargest=i;//Initializelargestas root 

7. int left= 2*i+1;//leftchild 

8. int right =2* i+2;//rightchild 

9. //Ifleftchildislargerthan root 

10. if(left<n&&a[left]>a[largest]) 

11. largest=left; 



 

 

 
 

 
12. //Ifrightchildislargerthanroot 

13. if(right<n&&a[right]>a[largest]) 

14. largest=right; 

15. //Ifrootisnot largest 

16. if(largest!=i){ 

17. //swapa[i]witha[largest] 

18. inttemp=a[i]; 

19. a[i]= a[largest]; 

20. a[largest]=temp; 

21. heapify(a,n,largest); 

22. } 

23.} 

24. /*Functiontoimplementtheheapsort*/ 

25. voidheapSort(inta[],intn) 

26. { 

27. for(inti=n/2-1;i>=0;i--) 

28. heapify(a,n,i); 

29. //Onebyoneextract anelementfromheap 

30. for(inti=n-1;i>=0;i--) { 

31. /*Movecurrentrootelementtoend*/ 

32. //swapa[0]witha[i] 

33. inttemp=a[0]; 

34. a[0]= a[i]; 

35. a[i]=temp; 

36. 

37. heapify(a,i,0); 

38. } 

39.} 

40. /*functiontoprintthearrayelements*/ 

41. voidprintArr(intarr[],intn) 

42. { 



 

 

 
 

 
43. for(inti=0;i<n;++i) 

44. { 

45. printf("%d",arr[i]); 

46. printf(""); 

47. } 

48. 

49.} 

50. intmain() 

51. { 

52. inta[]={48,10,23,43,28,26,1}; 

53. intn=sizeof(a)/ sizeof(a[0]); 

54. printf("Beforesortingarrayelementsare- \n"); 

55. printArr(a,n); 

56. heapSort(a,n); 

57. printf("\nAftersortingarrayelementsare-\n"); 

58. printArr(a,n); 

59. return0; 

60.} 

Output 
 



 

 

UNIT2-GRAPHS:basics,representation, 

traversals, and application 

Basicconcepts 

 
Definition 

 
AgraphG(V,E) isanon-lineardatastructurethat consistsofnode andedge 

pairsofobjectsconnectedby links. 

Thereare2typesofgraphs: 

 

 Directed 

 Undirected 

 
Directedgraph 

 

A graph with only directed edgesissaid tobe adirected graph. Example 

The following directed graph has5 verticesand8 edges. This graphG 

canbedefinedasG=(V,E),whereV={A,B,C,D,E}andE={(A,B), 

(A,C)(B,E),(B,D),(D,A),(D,E),(C,D),(D,D)}. 

 

DirectedGraph 

 

Undirectedgraph 
 

Agraphwithonlyundirectededgesissaidtobeanundirectedgraph. Example 

Thefollowingisanundirectedgraph. 
 

UndirectedGraph 
 
 
 
 
 
 
 
 
 
 

 

RepresentationofGraphs 

https://www.educative.io/edpresso/directed-graphs-vs-undirected-graphs
https://www.educative.io/edpresso/directed-graphs-vs-undirected-graphs


 

 

Graph data structure is represented using the following 

representations. 

 
1. AdjacencyMatrix 

2. AdjacencyList 

 

AdjacencyMatrix 

 
 Inthisrepresentation,the graph canbe representedusing a 

matrix of size n x n, where nisthe number of vertices. 

 Thismatrixisfilledwitheither1’sor0’s. 

 Here,1representsthatthere isanedgefromrowvertexto 

columnvertex,and0representsthatthereisnoedgefromrow 

vertextocolumnvertex. 

 

Directedgraphrepresentation 

 

Adjacencylist 

 
 In this representation, every vertex of the graph contains a 

listofitsadjacent vertices. 

 Ifthegraphisnotdense,i.e.,thenumberofedgesisless, thenit 

isefficient to represent thegraphthrough the adjacency list. 

 

AdjacencyList 

 

Graphtraversals 

 
 Graph traversalisa technique used to search for a vertexina 

graph.It isalso used to decide the order of vertices to be 

visited inthe search process. 

 A graph traversal finds the edges tobe usedinthe search 

process without creating loops. Thismeans that, with graph 

traversal,we canvisit allthe vertices of the graph without 

getting into a looping path. There are two graph traversal 

techniques: 

 
1. DFS(DepthFirstSearch) 

2. BFS(Breadth-FirstSearch) 

 

Applicationsofgraphs 

https://www.educative.io/edpresso/what-is-an-adjacency-matrix
https://www.educative.io/edpresso/what-is-depth-first-search
https://www.educative.io/edpresso/what-is-breadth-first-search


 

 

1. Social network graphs:To tweet or not to tweet. Graphs that 

representwhoknowswhom,whocommunicateswithwhom,who 

influenceswhom,orotherrelationshipsinsocialstructures.An 

exampleisthe twitter graph ofwho followswhom. 

2. Graphs in epidemiology: Vertices represent individuals and 

directededgestoviewthetransferofaninfectiousdisease 

fromoneindividualtoanother.Analyzingsuchgraphshasbecome 

animportantcomponentinunderstandingandcontrollingthe spread of 

diseases. 

3. Protein-protein interactions graphs: Vertices represent proteins 

andedges represent interactionsbetweenthem that carry out 

some biological function in the cell.These graphscanbeused 

to,forexample,studymolecularpathway—chainsofmolecular 

interactions ina cellular process. 

4. Network packet traffic graphs: Vertices are IP (Internet 

protocol)addressesandedgesarethepacketsthatflowbetween 

them.Such graphs are used for analyzingnetwork security, 

studying the spread of worms,and trackingcriminalor non- 

criminal activity. 

5. Neuralnetworks:Verticesrepresentneuronsandedgesarethe 

synapsesbetweenthem.Neuralnetworksareusedtounderstand 

howourbrainworksandhowconnectionschangewhenwelearn. 

Thehumanbrainhasabout1011neuronsandcloseto1015 synapses. 

 

 

DFS–DepthFirstSearch 

DepthFirstSearch(DFS)algorithmtraversesagraph inadepthwardmotionandusesastackto remember to 

get the next vertex to start a search, when a dead end occurs in any iteration. 
 

As inthe examplegivenabove, DFSalgorithmtraversesfromStoA toDtoG toE toBfirst,thentoF and lastly 

to C. It employs the following rules. 

 Rule1−Visittheadjacentunvisitedvertex.Markitasvisited.Displayit.Pushitinastack. 

 Rule2−Ifnoadjacent vertexisfound,popup avertexfromthestack.(It willpopupallthe vertices 

from the stack, which do not have adjacent vertices.) 

 Rule3−RepeatRule1andRule2untilthestackisempty. 
 

Step Traversal Description 



 

 

1 
 

 

 
 

 
Initializethestack. 

2 
 

 

Mark S as visited and put it onto the 

stack. Explore any unvisited adjacent 

nodefromS.Wehavethreenodesand we 

can pick any of them. For this example, 

we shall take the node in an 

alphabetical order. 

3 
 

 

MarkAas visitedandput itontothe 

stack.Exploreanyunvisitedadjacent 

node from A. Both S and D are 

adjacent to A but we are concerned 

for unvisited nodes only. 

4 
 

 

VisitDandmarkitasvisitedandput onto 

the stack. Here, we 

have B and C nodes, which are 

adjacenttoDandbothareunvisited. 

However,weshallagainchooseinan 

alphabetical order. 

5 
 

 

 
We choose B, mark it as visited and 

put onto the stack. Here B does not 

haveanyunvisitedadjacentnode.So, 

we pop B from the stack. 

6 
 

 

 
Wecheckthestacktopforreturnto 

thepreviousnodeandcheckifithas 

any unvisited nodes. Here, we 

findDtobe onthetopofthestack. 

7 
 

 

 
 

Onlyunvisitedadjacentnode is 

fromDisCnow.SowevisitC,markit as 

visited and put it onto the stack. 



 

 

DFS(G, u) 

u.visited=true 

foreachv∈G.Adj[u] 

ifv.visited==false 

DFS(G,v) 

 
init(){ 

For each u ∈ G 

u.visited=false 

Foreachu∈G DFS(G, 

u) 

} 
 
 
 
 
 
 
 
 

 

ApplicationofDFSAlgorithm 

1. Forfindingthepath 

2. Totestifthegraphisbipartite 

3. Forfindingthestronglyconnectedcomponentsofa graph 

4. Fordetectingcyclesinagraph 

BreadthFirstSearch 

BreadthFirstSearch(BFS)algorithmtraversesagraph inabreadthwardmotionandusesaqueue to 

remember to get the next vertex to start a search, when a dead end occurs in any iteration. 
 

Asinthe examplegivenabove,BFSalgorithmtraversesfromAtoBtoEtoFfirst thentoCandG lastly to D. It 

employs the following rules. 

 Rule1−Visittheadjacentunvisitedvertex.Markitasvisited.Displayit.Insertitinaqueue. 

 Rule2−Ifnoadjacentvertexisfound,removethefirstvertexfromthequeue. 

 Rule3− RepeatRule1andRule2untilthequeueisempty. 



 

 

Step Traversal Description 

1 
 

 

 
 

 
Initializethequeue. 

2 
 

 

 

 
WestartfromvisitingS(starting node), 

and mark it as visited. 

3 
 

 

We then see an unvisited adjacent 

nodefromS.Inthisexample,wehave 

three nodes but alphabetically we 

choose A, mark it as visited and 

enqueue it. 

4 
 

 

 
Next, the unvisited adjacent node 

fromSisB.Wemarkitasvisitedand 

enqueue it. 

5 
 

 

 
Next, the unvisited adjacent node 

fromSisC.Wemarkitasvisitedand 

enqueue it. 

6 
 

 

 

 
Now, S is left with no unvisited 

adjacentnodes.So,wedequeueand 

find A. 

7 
 

 

 
From A we have D as 

unvisitedadjacentnode.We 

mark it as visited and 

enqueue it. 



 

 

 
BFSpseudocode 

createaqueueQ 

markvasvisitedandputvintoQ while 

Q is non-empty 

removetheheaduofQ 

markandenqueueall(unvisited)neighboursofu 

BFSAlgorithmComplexity 

ThetimecomplexityoftheBFSalgorithmis representedintheformofO(V +E),whereVis the number of 

nodes and E is the number of edges. 

ThespacecomplexityofthealgorithmisO(V). 

BFSAlgorithmApplications 

1. Tobuildindexbysearchindex 

2. ForGPSnavigation 

3. Pathfindingalgorithms 

4. InFord-Fulkersonalgorithmtofindmaximumflowinanetwork 

5. Cycledetectioninanundirectedgraph 

6. Inminimumspanningtree 

 

Connectedgraph,StronglyconnectedandBi-Connectivity 

Connected Graph Component 

Aconnectedcomponentorsimplycomponent ofanundirectedgraphisasubgraphinwhicheach pair of 

nodes is connected with each other via a path. 

 

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
https://www.baeldung.com/cs/graphs
https://en.wikipedia.org/wiki/Path_graph


 

 

 

 
StronglyConnectedGraph 

The Kosaraju algorithm is a DFS based algorithm used to find Strongly Connected 

Components(SCC)inagraph.It isbasedontheideathatifoneisabletoreachavertexvstarting 

fromvertexu, thenoneshouldbe abletoreachvertexustartingfromvertexvand ifsuchis thecase, one can 

say that vertices u and v are strongly connected - they are in a strongly connected sub- graph. 
 

 

 
stackSTACK 

voidDFS(intsource){ 

visited[s]=true 

forallneighboursXofsourcethatarenotvisited: 

DFS(X) 

STACK.push(source) 

} 

 
CLEARADJACENCY_LIST 

foralledgese: 

first = one end point of e 

second=otherendpointofe 

ADJACENCY_LIST[second].push(first) 

 
whileSTACKisnotempty: 

source=STACK.top() 

STACK.pop() 

ifsourceisvisited: 

continue 

else : 

DFS(source) 

 

BiConnectivityGraph 

An undirected graph is said to be a biconnected graph, if there are two vertex-disjoint paths 

betweenanytwoverticesarepresent.Inotherwords,wecansay thatthereisacyclebetweenany two 

vertices. 
 

 
WecansaythatagraphGisabi-connectedgraphifitisconnected,andthereare noarticulation points or cut 

vertex are present in the graph. 



 

 

Tosolvethisproblem,wewillusetheDFStraversal.UsingDFS,wewilltrytofindifthereisany 

articulationpointispresentornot.WealsocheckwhetherallverticesarevisitedbytheDFSornot, if not we 

can say that the graph is not connected. 

PseudocodeforBi connectivity 
isArticulation(start,visited,disc,low,parent) 

Begin 

time := 0 //thevalueoftimewillnotbeinitializedfornextfunctioncalls 

dfsChild := 0 

markstartasvisited 

setdisc[start]:=time+1andlow[start]:=time+1 time 

:= time + 1 

forallvertexvinthegraph G,do 

ifthereisanedgebetween(start,v),then if v 

is visited, then 

increasedfsChild 

parent[v]:=start 

ifisArticulation(v,visited,disc,low,parent)istrue,then 

return ture 

low[start]:=minimumoflow[start]andlow[v] if 

parent[start] is φ AND dfsChild > 1, then 

returntrue 

ifparent[start]isφANDlow[v]>=disc[start],then return 

true 

else if v is not the parent of start, 

thenlow[start]:=minimumoflow[start]anddisc[

v] 

donereturn

false 

End 

isBiconnected(graph) 

Begin 

initiallysetallverticesareunvisitedandparentofeachverticesareφ if 

isArticulation(0, visited, disc, low, parent) = true, then 

returnfalse 

foreachnodeiofthegraph,do if i 

is not visited, then 

returnfalse 

done 

returntrue 

End 

 

MinimumSpanningTree 

A Spanning Tree is a tree which have V vertices and V-1 edges. All nodes in a spanning tree 

are reachable from each other. 

A Minimum Spanning Tree(MST) or minimum weight spanning tree for a weighted, 

connected, undirected graph is a spanning tree having a weight less than or equal to the 

weight of every other possible spanning tree. The weight of a spanning tree is the sum of 

weights given to each edge of the spanning tree. In short out of all spanning trees of a given 

graph, the spanning tree having minimum weight is MST. 

 
AlgorithmsforfindingMinimumSpanning Tree(MST):- 

1. Prim’sAlgorithm 



 

 

2. Kruskal’sAlgorithm 



 

 

 
 

 
Prim’sAlgorithm 
Prim'salgorithmisaminimumspanningtreealgorithmthattakesagraphasinputandfindsthe subset of the 

edges of that graph which 

 formatreethatincludeseveryvertex 

 hastheminimumsumofweightsamongallthetreesthatcanbeformedfromthegraph 
 

HowPrim'salgorithmworks 

It falls under a class of algorithms called greedy algorithmsthat find the local optimum in the hopes 

of finding a global optimum. 

Westart fromonevertexandkeepaddingedgeswiththelowestweight untilwereachourgoal. The steps 

for implementing Prim's algorithm are as follows: 

1. Initializetheminimumspanningtreewithavertexchosenat random. 

2. Find all the edges that connect the tree to new vertices, find the minimum and add it to the 

tree 

3. Keeprepeatingstep2untilwegetaminimumspanningtree 
 

ExampleofPrim'salgorithm 
 

 
Startwithaweightedgraph 

 

 
Chooseavertex 

 
 

 
Choosetheshortestedgefromthisvertexandaddit 

 

 
Choosethenearestvertexnotyetinthesolution 

 

 
Choosethenearestedgenotyetinthesolution,iftherearemultiplechoices,chooseoneatrandom 

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
https://www.programiz.com/dsa/greedy-algorithm


 

 

 

 

 
Prim'sAlgorithm pseudocode 
The pseudocode for prim's algorithm shows how we create two sets of vertices U and V-U. U 

contains the list of vertices that have been visited and V-U the list of vertices that haven't. One by 

one, we move vertices from set V-U to set U by connecting the least weight edge. 

T=∅; 

U={1}; 

while(U≠V) 

let (u,v)be thelowestcostedgesuchthatu∈ Uandv∈ V- U; 

T=T∪ {(u,v)} 

U =U∪ {v} 

 
Prim'sAlgorithmComplexity 

ThetimecomplexityofPrim'salgorithmisO(ElogV). 

 

KruskalAlgorithm 

 
Kruskal's algorithm is a minimum spanning treealgorithm that takes a graph as input and finds the 

subset of the edges of that graph which 

 formatreethatincludeseveryvertex 

 hastheminimumsumofweightsamongallthetreesthatcanbeformedfromthegraph 

HowKruskal'salgorithmworks 

It falls under a class of algorithms called greedy algorithmsthat find the local optimum in the hopes 

of finding a global optimum. 

Westart fromtheedgeswiththe lowestweightandkeepaddingedgesuntilwereachourgoal. The steps 

for implementing Kruskal's algorithm are as follows: 

1. Sortalltheedgesfromlowweighttohigh 

2. Taketheedgewiththelowestweightandaddittothespanningtree.Ifaddingtheedge created a 

cycle, then reject this edge. 

3. Keepaddingedgesuntilwereachallvertices. 
 

ExampleofKruskal'salgorithm 
 

 
Startwithaweightedgraph 

 

Choosetheedgewiththeleastweight,iftherearemorethan1,chooseanyone 

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm


 

 

 

 

Choosethenextshortestedgeandaddit 
 

Choosethenextshortestedgethatdoesn'tcreateacycleandaddit 
 

Choosethenextshortestedgethatdoesn'tcreateacycleandaddit 
 

Repeatuntilyouhaveaspanning tree 
 

KruskalAlgorithmPseudocode 

KRUSKAL(G): 

A =∅ 

Foreachvertexv∈G.V: 

MAKE-SET(v) 

Foreachedge(u,v)∈G.Eorderedbyincreasingorderbyweight(u,v): 

ifFIND-SET(u)≠FIND-SET(v): 

A=A∪{(u,v)} 

UNION(u, v) 

returnA 

 

ShortestPathAlgorithm 

The shortest path problem is about finding a path between vertices in a graph such that the 

totalsum of the edges weights is minimum. 

 
AlgorithmforShortestPath 

1. BellmanAlgorithm 

2. DijkstraAlgorithm 

3. FloydWarshallAlgorithm 

 

BellmanAlgorithm 
BellmanFordalgorithmhelpsusfindtheshortestpathfromavertextoallotherverticesofa weighted graph. 

ItissimilartoDijkstra'salgorithmbutitcanworkwithgraphsinwhichedgescanhavenegative weights. 

https://www.programiz.com/dsa/dijkstra-algorithm


 

 

HowBellmanFord'salgorithmworks 

Bellman Ford algorithm works by overestimating the length of the path from the starting vertex toall 

other vertices. Then it iteratively relaxes those estimates by finding new paths that are shorter than 

the previously overestimated paths. 

Bydoingthisrepeatedlyforallvertices,wecanguaranteethattheresultisoptimized. 

 

 

 
Step-1forBellmanFord'salgorithm 

 

 

 
Step-2forBellmanFord'salgorithm 

 



 

 

 

 

 

 
 

 
Step-4forBellmanFord'salgorithm 

 

 

 

 
Step-5forBellmanFord'salgorithm 

 

 

 
Step-6forBellmanFord'salgorithm 



 

 

 

 
 

BellmanFordPseudocode 

Weneedtomaintainthepathdistanceofeveryvertex.Wecanstorethatinanarrayofsizev, where v is the 

number of vertices. 

We also want to be able to get the shortest path, not only know the length of the shortest path. For 

this, we map each vertex to the vertex that last updated its path length. 

Oncethe algorithmisover,wecanbacktrack fromthe destinationvertextothesourcevertextofind the 

path. 

functionbellmanFord(G,S) for 

each vertex V in G 

distance[V] <- infinite 

previous[V]<-NULL 

distance[S] <- 0 

 
for each vertex V in 

Gforeachedge(U,V)inG 

tempDistance<-distance[U]+edge_weight(U,V) if 

tempDistance < distance[V] 

distance[V]<-tempDistance 

previous[V] <- U 

 
foreachedge (U,V)inG 

Ifdistance[U]+edge_weight(U,V)<distance[V} 

Error:NegativeCycleExists 

return distance[], previous[] 

Bellman Ford's Complexity 

Time Complexity 

 
 
 
 
 

 
DijkstraAlgorithm 

 
Dijkstra'salgorithmallowsustofindtheshortestpathbetweenanytwoverticesofa graph. 

Itdiffersfromtheminimumspanningtreebecausetheshortestdistancebetweentwovertices might not 

include all the vertices of the graph. 

 
HowDijkstra'sAlgorithmworks 

Dijkstra's Algorithm works on the basis that any subpath B -> D of the shortest path A -> D between 

vertices A and D is also the shortest path between vertices B and D. 

 

BestCaseComplexity O(E) 

AverageCaseComplexity O(VE) 

WorstCaseComplexity O(VE) 



 

 

 

Eachsubpathistheshortest path 
 

Djikstra used this property in the opposite direction i.e we overestimate the distance of each vertex 

from the starting vertex. Then we visit each node and its neighbors to find the shortest subpath to 

those neighbors. 

The algorithm uses a greedy approach in the sense that we find the next best solution hoping that 

the end result is the best solution for the whole problem. 

 
ExampleofDijkstra'salgorithm 

Itiseasiertostartwithanexampleandthenthinkaboutthealgorithm. 
 

 

 
Startwithaweightedgraph 

 

 

 
Chooseastartingvertexandassigninfinitypathvaluestoallotherdevices 

 

 

 
Gotoeachvertexandupdateitspath length 



 

 

 

 

 
 
 

Ifthepathlengthoftheadjacentvertexislesserthannewpathlength,don'tupdateit 
 

 

 
 

Avoidupdatingpathlengthsofalreadyvisitedvertices 
 
 

 
 

Aftereachiteration,wepicktheunvisitedvertexwiththeleastpathlength.Sowechoose5before7 



 

 

 

 

 
 
 

Noticehowtherightmostvertexhasitspathlengthupdatedtwice 
 
 

 
 

Repeatuntilalltheverticeshavebeenvisited 

 
Djikstra'salgorithmpseudocode 

Weneedtomaintainthepathdistanceofeveryvertex.Wecanstorethatinanarrayofsizev, where v is the 

number of vertices. 

We also want to be able to get the shortest path, not only know the length of the shortest path. For 

this, we map each vertex to the vertex that last updated its path length. 

Oncethe algorithmisover,wecanbacktrack fromthe destinationvertextothesourcevertextofind the 

path. 

Aminimumpriorityqueuecanbeusedtoefficiently receivethe vertexwithleastpathdistance. function 

dijkstra(G, S) 

for each vertex V in G 

distance[V]<-infinite 

previous[V] <- NULL 

IfV!=S,addVtoPriorityQueueQ 

distance[S] <- 0 

 
whileQISNOTEMPTY 

U<-ExtractMINfromQ 

foreachunvisitedneighbourVofU 

tempDistance<-distance[U]+edge_weight(U,V) if 

tempDistance < distance[V] 

distance[V]<-tempDistance 

previous[V] <- U 

returndistance[],previous[] 



 

 

 

Dijkstra'sAlgorithmComplexity 

TimeComplexity:O(ELogV) 

where,EisthenumberofedgesandVisthenumberofvertices. Space 

Complexity: O(V) 

 

FloydWarshallAlgorithm 

 
Floyd-Warshall Algorithm is an algorithm for finding the shortest path between all the pairs of 

vertices in a weighted graph. This algorithm works for both the directed and undirected weighted 

graphs. But, it does not work for the graphs with negative cycles (where the sum of the edges in a 

cycle is negative). 

Aweightedgraphisagraph inwhicheachedgehasanumericalvalueassociatedwith it. 

Floyd-Warhshall algorithm is also called as Floyd's algorithm, Roy-Floyd algorithm, Roy-Warshall 

algorithm, or WFI algorithm. 

Thisalgorithmfollowsthedynamicprogrammingapproachtofindtheshortestpaths. 
 

HowFloyd-WarshallAlgorithmWorks? 

Letthegivengraphbe: 
 

 

 
Initialgraph 

Followthestepsbelowtofindtheshortestpathbetweenallthepairsof vertices. 

1. CreateamatrixA0ofdimensionn*nwherenisthenumberofvertices.Therowandthe column are 

indexed as i and j respectively. i and j are the vertices of the graph. 

EachcellA[i][j]isfilledwiththedistancefromtheithvertextothejthvertex.Ifthereisno path from ith 

vertex to jth vertex, the cell is left as infinity. 

 

Filleachcellwiththedistancebetweenithandjthvertex 
 

 
2. Now, create a matrix A1 using matrix A0. The elements in the first column and the first 

roware left as they are. The remaining cells are filled in the following way. 

Letkbetheintermediatevertexintheshortestpathfromsourcetodestination.Inthis step, k is the 

first vertex. A[i][j] is filled with (A[i][k] + A[k][j]) if (A[i][j] > A[i][k] + A[k][j]). 

Thatis,ifthedirectdistancefromthesourcetothedestinationisgreaterthanthepath h the vertex k, 

then the cell is filled with A[i][k] + A[k][j]. 

https://www.programiz.com/dsa/dynamic-programming


 

 

 

Inthisstep,k isvertex1.Wecalculatethedistancefromsourcevertextodestination vertex 
through this vertex 

 

k. Calcula 

tethedistancefromthesourcevertextodestinationvertexthroughthisvertexk 
 

 
Forexample:ForA1[2,4],thedirectdistancefromvertex2to4is4andthesumofthe 

distancefromvertex2to4throughvertex(ie.fromvertex2 to1andfromvertex1to4)is7. 

Since4<7,A0[2,4]isfilledwith4. 

3. Similarly, A2 is created using A1. The elements in the second column and the second row are 

left as they are. 

Inthisstep,kisthesecond vertex(i.e.vertex2).Theremainingstepsarethesameasin step 

 

2. Calcula 

tethedistancefromthesourcevertextodestinationvertexthroughthisvertex2 

 
4. Similarly,A3andA4isalsocreated. 

 

Calculat

e the distance from the source vertex to destination vertex through this 



 

 

 

 

 

vertex C 

alculatethedistancefromthesourcevertextodestinationvertexthroughthisvertex4 

5. A4givestheshortestpathbetweeneachpairofvertices. 
 

Floyd-WarshallAlgorithm 

n=noof vertices 

A=matrixofdimensionn*n for 

k = 1 to n 

for i = 1 to n 

forj=1ton 

Ak[i,j]=min(Ak-1[i,j],Ak-1[i,k]+Ak-1[k,j]) 

return A 
 

 
TimeComplexity 

There are three loops. Each loop has constant complexities. So, the time complexity of the Floyd- 

Warshall algorithm is O(n3). 

 

 

NetworkFlow 
Flow Network is a directed graph that is used for modeling material Flow. There are two different 

vertices; one is asource whichproducesmaterialat some steady rate,and anotherone issink which 

consumes the content at the same constant speed. The flow of the material at any mark in the 

system is the rate at which the element moves. 

Somereal-life problemslikethe flowofliquids throughpipes, the currentthroughwiresanddelivery of 

goods can be modelled using flow networks. 

Definition:AFlowNetworkisadirectedgraphG=(V,E)suchthat 

1. For each edge (u, v) ∈ E, we associate a nonnegative weight capacity c (u, v) ≥ 0.If (u, v) ∉ E, 

we assume that c (u, v) = 0. 

2. Therearetwodistinguishingpoints,thesources,andthesink t; 

3. Foreveryvertexv∈ V,thereisapathfromstotcontainingv. 

Let G = (V, E) be a flow network. Let s be the source of the network, and let t be the sink. A flow in G 

is a real-valued function f: V x V→R such that the following properties hold: 

PlayVideo 

o CapacityConstraint:Forallu,v∈ V,weneedf(u,v)≤c(u,v). 

o SkewSymmetry:Forallu,v∈ V,weneedf(u,v)=-f(u,v). 

o FlowConservation:Forallu∈V-{s,t},we need 

Thequantityf(u,v),whichcanbepositiveornegative,isknownasthenetflowfromvertexuto 

vertexv.Inthemaximum-flowproblem,wearegivenaflownetworkGwithsourcesandsinkt,and 

aflowofmaximumvaluefromstot. 



 

 

 

Ford-FulkersonAlgorithm 

 
Initially,theflowofvalueis 0.Find someaugmentingPathpandincreaseflowf oneachedge of pby residual 

Capacity cf (p). When no augmenting path exists, flow f is a maximum flow. 

FORD-FULKERSONMETHOD(G,s,t) 

1. Initializeflowfto0 

2. whilethereexistsanaugmentingpathp 

3. doargumentflowfalongp 

4. Returnf 

 
FORD-FULKERSON(G,s,t) 

1. foreachedge(u,v)∈E [G] 

2. dof[u, v]←0 

3. f[u,v]←0 

4. whilethereexistsapathpfromstotintheresidualnetworkGf. 

5. docf(p)←min?{Cf(u,v):(u,v)isonp} 

6. foreachedge(u,v)inp 

7. dof [u,v]←f[u, v]+ cf(p) 

8. f[u,v]←-f[u,v] 

 
Example: Each Directed Edge is labeled with capacity. Use the Ford-Fulkerson algorithm to find the 

maximum flow. 
 

Solution: The left side of each part shows the residual network Gfwith a shaded augmenting 

pathp,and the right side of each part shows the net flow f. 
 

 



 

 

 

 
 
 
 
 
 
 

 
MaximumBipartiteMatching 
The bipartite matching is a set of edges in a graph is chosen in such a way, that no two edges in that 

set will share an endpoint. The maximum matching is matching the maximum number of edges. 

 
When the maximum match is found, we cannot add another edge. If one edge is added to the 

maximum matched graph, it is no longer a matching. For a bipartite graph, there can be more than 

one maximum matching is possible. 

 

Algorithm 

 
bipartiteMatch(u,visited,assign) 

Input:Startingnode,visitedlisttokeeptrack,assignthelisttoassignnodewithanothernode. 

Output−Returnstruewhenamatchingforvertexuispossible. 

Begin 

forallvertexv,whichareadjacentwithu,do if v is 

not visited, then 

markvas visited 

ifvisnotassigned,orbipartiteMatch(assign[v],visited,assign)istrue,then assign[v] := u 

returntrue 

done 

returnfalse 

End 

maxMatch(graph)Input

−Thegivengraph. 

Output−Themaximumnumberofthematch. 

Begin 

initiallynovertexisassigned 

count := 0 

for all applicant u in M, do 

makeallnodeasunvisited 

ifbipartiteMatch(u,visited,assign),then 

increase count by 1 

done 

End 



 

 

 

 

 
Unit3 

DivideandConquerAlgorithm 

Adivideandconqueralgorithmis astrategy ofsolvingalargeproblemby 

1. breakingtheproblemintosmallersub-problems 

2. solvingthesub-problems,and 

3. combiningthemtogetthedesiredoutput. 

Tousethedivideandconqueralgorithm,recursionis used. 

 
HowDivideandConquerAlgorithmsWork? 

Herearethesteps involved: 

1. Divide:Dividethegivenproblemintosub-problemsusing recursion. 

2. Conquer:Solvethesmallersub-problemsrecursively.Ifthesubproblemissmall 

enough, then solve it directly. 

3. Combine:Combinethesolutionsofthesub-problemsthatarepartoftherecursive 

process to solve the actual problem. 

 
FindingMaximumand Minimum 

To find the maximum and minimum numbers in a given array numbers[] of size n, the 

followingalgorithmcan beused.Firstwearerepresentingthenaivemethodandthen we will 

present divide and conquer approach. 

NaïveMethod 

Naïve method is a basic method to solve any problem. In this method, the maximum and 

minimumnumbercanbefoundseparately.Tofindthemaximumandminimumnumbers, the 

following straightforward algorithm can be used. 

Algorithm:Max-Min-Element(numbers[]) 

max := numbers[1] 

min:=numbers[1] 

for i = 2 to n do 

ifnumbers[i]>maxthen 

max := numbers[i] 

ifnumbers[i]<minthen 

min := numbers[i] 

return(max,min) 

 
Analysis 

ThenumberofcomparisoninNaivemethodis2n-2. 

Thenumberofcomparisonscan bereducedusingthedivideandconquerapproach. Following is 

the technique. 



 

 

 

 

 
DivideandConquer Approach 

In this approach, the array is divided into two halves. Then using recursive approach 

maximum and minimum numbers in each halves are found. Later, return the maximum of 

two maxima of each half and the minimum of two minima of each half. 

Inthisgivenproblem,thenumberofelementsin anarrayisy−x+1, whereyisgreaterthan or equal 

to x. 

Max−Min(x,y)will returnthemaximumandminimum valuesofanarraynumbers[x...y]. 

Algorithm:Max-Min(x,y) 

ify –x ≤1then 

return(max(numbers[x],numbers[y]),min((numbers[x],numbers[y])) 

else 

(max1,min1):=maxmin(x,⌊((x+ y)/2)⌋) 

(max2,min2):=maxmin(⌊((x+y)/2)+1)⌋,y) 

return(max(max1, max2),min(min1,min2)) 

Analysis 

LetT(n) bethenumberofcomparisonsmadebyMax−Min(x,y), wherethenumberof 

elements n=y−x+1. 

IfT(n)representsthenumbers,thentherecurrencerelationcanberepresentedas 
 

 
Letusassumethatnisintheformofpowerof 2.Hence,n= 2kwherekisheightofthe recursion tree. 

So, 
 

 
ComparedtoNaïvemethod,individeandconquerapproach,thenumberofcomparisonsis less. 

However, using the asymptotic notation both of the approaches are represented 

by O(n). 



 

 

 

 

 
MergeSort 

MergeSortisoneofthemostpopularsortingalgorithmsthat isbasedontheprinciple of 

Divide and Conquer Algorithm. 

Here,aproblemisdividedintomultiplesub-problems.Eachsub-problemissolved individually. 

Finally, sub-problems are combined to form the final solution. 

 

 
MergeSort example 

 

DivideandConquer Strategy 

UsingtheDivideandConquertechnique,wedivideaproblemintosubproblems.Whenthe 

solution to each subproblem is ready, we 'combine' the results from the subproblems to 

solve the main problem. 

Supposewe hadtosortanarrayA.Asubproblemwouldbetosortasub-sectionofthis array 

starting at index p and ending at index r, denoted as A[p..r]. 

Divide 

Ifqisthehalf-waypointbetweenpandr,thenwecansplitthesubarrayA[p..r]intotwo arrays 

A[p..q] and A[q+1, r]. 

Conquer 

Intheconquerstep,wetrytosortboth thesubarraysA[p..q]andA[q+1,r].Ifwehaven'tyet reached 

the base case, we again divide both these subarrays and try to sort them. 

https://www.programiz.com/dsa/sorting-algorithm
https://www.programiz.com/dsa/divide-and-conquer


 

 

 

 

 
Combine 

Whentheconquer stepreachesthebasestepandwegettwosorted 

subarraysA[p..q]andA[q+1,r]forarrayA[p..r],wecombinetheresultsbycreatingasorted array 

A[p..r] from two sorted subarrays A[p..q] and A[q+1, r]. 

 

MergeSort Algorithm 

TheMergeSortfunctionrepeatedlydividesthearrayintotwo halvesuntilwe reachastage where 

we try to perform MergeSort on a subarray of size 1 i.e. p == r. 

Afterthat,themergefunctioncomesintoplayandcombinesthesortedarraysinto larger arrays 

until the whole array is merged. 

MergeSort(A,p,r): if 

p > r 

return 

q = (p+r)/2 

mergeSort(A, p, q) 

mergeSort(A,q+1,r) 

merge(A, p, q, r) 

 
voidmerge(intarr[],intp,intq,intr) 

{ 

//CreateL←A[p..q]andM←A[q+1..r] int 

n1 = q - p + 1; 

intn2=r-q; 

intL[n1],M[n2]; 

for(inti=0;i<n1;i++) L[i] = 

arr[p + i]; 

for(intj=0;j<n2;j++) M[j] 

= arr[q + 1 + j]; 

 
//Maintaincurrentindexofsub-arraysandmainarray int i, 

j, k; 

i=0; 

j=0; 

k=p; 

 
//Untilwereacheither endofeitherLorM,picklarger among 

//elementsLandMandplacetheminthecorrectpositionatA[p..r] while (i < 

n1 && j < n2) 

{ 
if(L[i] <=M[j]) 

{ 
arr[k]= L[i]; 



 

 

 

 
 

 

 
} 

else 
{ 

 
} 

k++; 
} 

i++; 
 

 
arr[k]=M[j]; j++; 

//WhenwerunoutofelementsineitherL orM, 
//pickuptheremainingelementsandputinA[p..r] while (i 

< n1) 
{ 

arr[k]=L[i]; 
i++; 
k++; 

} 
 

while(j <n2) 
{ 

 
 
 

} 
} 

 

 
arr[k]=M[j]; j++; 
k++; 

 
Time Complexity 

Best Case Complexity: O(n*log n) 

Worst Case Complexity: O(n*log n) 

AverageCaseComplexity:O(n*logn) 

Dynamic Programming 

MatrixChainMultiplication 

Dynamicprogrammingisamethodforsolvingoptimization problems. 

Itisalgorithmtechniquetosolve acomplexandoverlappingsub-problems.Computethe 

solutionsto thesub-problemsonce andstorethesolutionsinatable, sothattheycanbe 

reused (repeatedly) later. 

DynamicprogrammingismoreefficientthenotheralgorithmmethodslikeasGreedy method, 

Divide and Conquer method, Recursion method, etc…. 

The real time many of problems are not solve using simple and traditional approach 

methods. like as coin change problem , knapsack problem, Fibonacci sequence generating , 

complexmatrixmultiplication….TosolveusingIterativeformula,tediousmethod,repetition 

again and again it become a more time consuming and foolish. some of the problem it 

should be necessary to divide a sub problems and compute its again and again to solve a 



 

 

 

 

 
suchkindofproblemsandgivetheoptimalsolution,effectivesolutiontheDynamic programming 

is needed… 

BasicFeaturesofDynamicprogramming:- 

 Getallthepossiblesolutionandpickupbestandoptimal solution. 

 Workonprincipalofoptimality. 

 Definesub-partsandsolvethem usingrecursively. 

 Lessspace complexityButmoreTimecomplexity. 

 Dynamicprogrammingsavesusfromhavingtorecomputepreviouslycalculatedsub- 

solutions. 

 Difficultto understanding. 

We are covered a many of the real world problems.In our day to day life when we do 

making coin change, robotics world, aircraft, mathematical problems like Fibonacci 

sequence,simplematrixmultiplicationofmorethentwomatricesanditsmultiplication 

possibility is many more so in that get the best and optimal solution. NOW we can look 

about one problem that is MATRIX CHAIN MULTIPLICATION PROBLEM. 

Suppose,Wearegivenasequence(chain)(A1,A2……An)ofnmatricestobemultiplied,and we 

wish to compute the product (A1A2…..An).We can evaluate the above expression using the 

standard algorithm for multiplying pairs of matrices as a subroutine once we have 

parenthesized it to resolve all ambiguities in how the matrices are multiplied together. 

Matrixmultiplicationisassociative,andsoallparenthesizationsyield thesameproduct.For 

example, if the chain of matrices is (A1, A2, A3, A4) then we can fully parenthesize the 

product (A1A2A3A4) in five distinct ways: 

1:-(A1(A2(A3A4))), 

2:-(A1((A2A3)A4)), 

3:-((A1A2)(A3A4)), 

4:-((A1(A2A3))A4), 

5:-(((A1A2)A3)A4). 

WecanmultiplytwomatricesAandBonlyiftheyarecompatible.thenumberofcolumnsof A must 

equal the number of rows of B. If A is a p x q matrix and B is a q x r matrix,the resulting 

matrix C is a p x r matrix. The time to compute C is dominated by the number of scalar 

multiplications is pqr. we shall express costs in terms of the number of scalar 

multiplications.For example, if we have three matrices (A1,A2,A3) and its cost is 

(10x100),(100x5),(5x500)respectively. so we can calculate thecost of scalarmultiplication is 

10*100*5=5000 if ((A1A2)A3), 10*5*500=25000 if (A1(A2A3)), and so on cost 

calculation. Note that in the matrix-chain multiplication problem, we are not actually 

multiplyingmatrices.Ourgoalisonlytodetermineanorderformultiplyingmatricesthat has the 

lowest cost.that is here is minimum cost is 5000 for above example .So problem is we can 

perform a many time of cost multiplication and repeatedly the calculation is 



 

 

 

 

 
performing.sothisgeneralmethodisverytimeconsumingandtedious.Sowecan apply 

dynamic programming for solve this kind of problem. 

whenweusedtheDynamicprogrammingtechniqueweshallfollowsomesteps. 

1. Characterizethestructureofanoptimal solution. 

2. Recursivelydefinethevalueofanoptimalsolution. 

3. Computethevalueofanoptimal solution. 

4. Constructanoptimalsolutionfromcomputedinformation. 
 

wehavematricesofanyoforder.ourgoalisfindoptimalcostmultiplicationof matrices.when we 

solve the this kind of problem using DP step 2 we can get 

m[i ,j]=min {m[i , k]+m[i+k, j]+ pi-1*pk*pj}ifi <j….wherep isdimensionofmatrix,i≤ k < j ….. 

Thebasicalgorithmofmatrixchainmultiplication:- 

//MatrixA[i]hasdimensiondims[i-1]xdims[i]fori =1..n 

MatrixChainMultiplication(intdims[]) 

{ 

//length[dims]=n+1 

n=dims.length -1; 

//m[i,j]=Minimumnumberofscalarmultiplications(i.e.,cost) 

//neededtocomputethematrixA[i]A[i+1]...A[j]= A[i..j] 

//Thecostiszerowhenmultiplyingonematrix 

for(i=1;i<=n;i++) 

m[i, i] = 0; 

 
for(len=2;len<=n;len++){ 

//Subsequence lengths 

for(i=1;i<=n-len+1;i++){ j = i + 

len - 1; 

m[i, j]=MAXINT; 

for(k =i;k <=j-1;k++) { 

cost= m[i,k]+m[k+1,j]+dims[i-1]*dims[k]*dims[j]; 

if(cost<m[i,j]){ m[i, 

j] = cost; 

s[i,j]=k; 

//Indexofthesubsequencesplitthatachievedminimalcost 

} 



 

 

 

 

 
} 

} 

} 

} 

ExampleofMatrixChainMultiplication 

Example:Wearegiventhesequence {4, 10,3, 12,20, and7}.Thematriceshavesize4 x10, 

10x3,3x12,12x20,20x7.We needtocomputeM[i,j],0 ≤i, j≤ 5.We knowM [i,i]=0 for all i. 
 

Letusproceedwithworkingawayfromthediagonal.We computetheoptimalsolutionfor the 

product of 2 matrices. 
 

InDynamicProgramming,initializationofeverymethoddoneby‘0’.Soweinitializeitby ‘0’.It will 

sort out diagonally. 

Wehavetosortoutallthecombinationbuttheminimumoutputcombinationistakeninto consideration. 

CalculationofProductof2matrices: 

1. m (1,2)=m1x m2 

=4x 10x10x3 

=4x 10x 3=120 

 
2. m (2,3)=m2x m3 

=10x 3x3x 12 

=10x 3x12=360 

 
3. m (3,4)=m3x m4 



 

 

 

 

 
=3x12x12x20 

=3x12x20=720 

 
4. m (4,5)=m4x m5 

=12x 20x20x 7 

=12x 20x 7=1680 
 

 Weinitializethediagonalelementwithequali,j valuewith‘0’. 

 Afterthatseconddiagonalissorted outandwegetallthevaluescorrespondedtoit Now 

the third diagonal will be solved out in the same way. 

Nowproductof3 matrices: 

M[1,3] =M1M2 M3 

1. Therearetwocasesbywhichwecansolvethismultiplication:(M1xM2)+M3,M1+ (M2x 

M3) 

2. Aftersolvingbothcaseswechoosethecase inwhichminimumoutputisthere. 
 

M[1,3]=264 

AsComparingbothoutput264isminimuminbothcasesso weinsert264intableand(M1 x M2) + 

M3 this combination is chosen for the output making. 

M[2,4] =M2M3 M4 

1. Therearetwocasesbywhichwecansolvethismultiplication:(M2xM3)+M4, 

M2+(M3 x M4) 

2. Aftersolvingbothcaseswechoosethecase inwhichminimumoutputisthere. 
 

M[2,4]=1320 



 

 

 

 

 
AsComparingbothoutput1320isminimuminbothcasessoweinsert1320intableand M2+(M3 x 

M4) this combination is chosen for the output making. 

M[3,5]= M3M4M5 

1. Therearetwocasesbywhichwecansolvethismultiplication:(M3xM4)+M5,M3+ ( 

M4xM5) 

2. Aftersolvingbothcaseswechoosethecase inwhichminimumoutputisthere. 
 

M[3,5]=1140 

AsComparingbothoutput1140isminimuminbothcasessoweinsert1140intableand ( M3 x 

M4) + M5this combination is chosen for the output making. 
 

NowProductof4matrices: 

M[1,4] =M1M2M3 M4 

Therearethreecasesbywhich wecansolvethismultiplication: 

1. ( M1 xM2 x M3)M4 

2. M1x(M2x M3xM4) 

3. (M1xM2)x ( M3xM4) 

Aftersolvingthesecaseswechoosethecase inwhichminimumoutputisthere 
 

M[1,4]=1080 

Ascomparing theoutputofdifferentcases then‘1080’is minimumoutput,sowe insert 

1080inthetableand(M1xM2) x(M3xM4) combinationistakenoutinoutputmaking, 

M[2,5] =M2 M3M4 M5 

Therearethreecasesbywhich wecansolvethismultiplication: 

1. (M2x M3x M4)x M5 

2. M2x( M3 x M4xM5) 



 

 

 

 

 
3. (M2x M3)x( M4xM5) 

Aftersolvingthesecaseswechoosethecase inwhichminimumoutputisthere 
 

M[2,5]=1350 

Ascomparingtheoutputofdifferentcasesthen‘1350’isminimumoutput,sowe insert 1350 in 

the table and M2 x( M3 x M4xM5)combination is taken out in output making. 
 

NowProductof5matrices: 

M[1,5] =M1M2M3M4 M5 

Therearefivecasesbywhichwe cansolvethismultiplication: 

1. (M1x M2xM3x M4)xM5 

2. M1x( M2 xM3x M4xM5) 

3. (M1x M2xM3)xM4 xM5 

4. M1x M2x(M3x M4xM5) 

Aftersolvingthesecaseswechoosethecase inwhichminimumoutputisthere 
 

M[1,5]=1344 

As comparing the output of different cases then ‘1344’ is minimum output, so we insert 

1344inthetableandM1xM2x(M3xM4xM5)combinationistakenoutinoutputmaking. 

FinalOutputis: 



 

 

 

 
 

 

 

Sowe cangettheoptimalsolutionofmatrices multiplication…. 
 
 
 
 
 
 

 
MultiStageGraph 

MultistageGraphproblemisdefinedas follow: 

 Multistage graph G = (V, E, W) is a weighted directed graph in which vertices are 

partitioned into k ≥ 2 disjoint sub sets V = {V1, V2, …, Vk} such that if edge (u, v) is 

presentinE thenu∈ Viandv∈ Vi+1,1 ≤i≤ k.Thegoalofmultistagegraphproblemis to find 

minimum cost path from source to destination vertex. 

 Theinputtothealgorithmisak-stagegraph,nverticesareindexedinincreasing order 

of stages. 

 Thealgorithmoperatesinthebackwarddirection,i.e.itstartsfromthelast vertexof the 

graph and proceeds in a backward direction to find minimum cost path. 

 Minimumcostofvertexj∈Vifromvertexr∈Vi+1isdefinedas, Cost[j] 

= min{ c[j, r] + cost[r] } 

where,c[j, r]istheweightofedge<j, r>andcost[r]isthecostofmovingfromend vertex to 

vertex r. 

 Algorithmforthemultistagegraphisdescribedbelow: 

Algorithm for Multistage Graph 

AlgorithmMULTI_STAGE(G,k,n,p) 

//Description:Solvemulti-stageproblemusingdynamicprogramming 

 
//Input: 

k:NumberofstagesingraphG=(V,E) c[i, 

j]:Cost of edge (i, j) 

//Output:p[1:k]:Minimumcostpath 

cost[n] ← 0 

forj←n–1to1do 



 

 

 

 

 
//Letrbeavertexsuchthat(j,r)inEandc[j,r]+cost[r]isminimum cost[j] ← c[j, 

r] + cost[r] 

π[j]←r 

end 

 
//Findminimumcostpath 

p[1] ← 1 

p[k]←n 

 
forj←2tok-1do 

p[j]←π[p[j-1]] 

end 

ComplexityAnalysisofMultistageGraph 

IfgraphGhas|E|edges,thencostcomputationtimewouldbeO(n +|E|).Thecomplexity of 

tracing the minimum cost path would be O(k), k < n. Thus total time complexity of 

multistage graph using dynamic programming would be O(n + |E|). 

Example 

Example:Findminimumpathcostbetweenvertexsandtforfollowingmultistagegraph using 

dynamic programming. 
 

 
Solution: 

Solutiontomultistagegraphusingdynamicprogrammingisconstructedas, Cost[j] = 

min{c[j, r] + cost[r]} 

Here,numberofstagesk=5,numberofverticesn=12, sources=1 andtargett =12 Initialization: 

Cost[n]=0⇒Cost[12]=0. 

p[1] = s ⇒ p[1] = 1 

p[k]=t⇒p[5]=12. r = 

t = 12. 



 

 

 

 

 
Stage4: 

 

 
Stage3: 

Vertex6isconnected tovertices9and10: 

Cost[6]=min{c[6,10]+Cost[10],c[6,9]+ Cost[9]} 

=min{5+2,6+ 4}=min{7,10}=7 

p[6]=10 

Vertex7isconnected tovertices9and10: 

Cost[7]=min{c[7,10]+Cost[10],c[7,9]+ Cost[9]} 

=min{3+2,4+ 4}=min{5,8}=5 

p[7]=10 

Vertex8isconnected tovertex 10and11: 

Cost[8]=min{c[8,11]+Cost[11],c[8,10]+Cost[10]} 

=min{6+5,5+2}=min{11,7}=7p[8]=10 
 
 

 

 
Stage2: 

Vertex2isconnected tovertices6,7and8: 

Cost[2]=min{c[2,6]+Cost[6], c[2,7]+Cost[7], c[2,8] +Cost[8]} 

=min{4+7,2+5,1+7}=min{11,7, 8}=7 



 

 

 

 

 
p[2]=7 

Vertex3isconnectedtovertices6and7: 

Cost[3]=min{c[3,6]+Cost[6],c[3,7]+Cost[7]} 

=min{2+7,7+ 5}=min{9,12}=9 

p[3]=6 

Vertex4isconnectedtovertex 8: 

Cost[4]=c[4, 8]+Cost[8]= 11+7=18 

p[4]=8 

Vertex5isconnected tovertices7and8: 

Cost[5]=min{c[5,7]+Cost[7],c[5,8]+Cost[8]} 

=min{11+5,8+7}=min{16,15}=15p[5]=8 

 

 
Stage1: 

Vertex1isconnected tovertices2,3, 4and5: 

Cost[1]=min{c[1,2]+Cost[2],c[1, 3]+ Cost[3],c[1,4]+ Cost[4],c[1,5]+Cost[5]} 

=min{9+7,7+9,3+18,2+15 } 

=min{16,16,21,17}=16p[1]=2 

Tracethe solution: 

p[1]=2 

p[2]=7 

p[7]=10 



 

 

 

 
 
 
 

 

 
 

p[10]=12 

Minimumcostpathis: 1–2–7–10–12 

Costofthepathis:9+2+3+2=16 
 

 
OptimalBinarySearchTree 

 OptimalBinary SearchTreeextends theconceptofBinary searctree. BinarySearch 

Tree(BST) isanonlineardatastructurewhich isusedinmanyscientificapplications for 

reducing the search time. In BST, left child is smaller than root and right child is 

greater than root. This arrangement simplifies the search procedure. 

 Optimal Binary Search Tree (OBST) is very useful in dictionary search. The probability 

ofsearchingisdifferentfor differentwords. OBST hasgreat applicationintranslation. 

If we translate the book from English to German, equivalent words are searched 

fromEnglishtoGermandictionaryandreplacedintranslation.Wordsaresearched same 

as in binary search tree order. 

 Binarysearchtreesimplyarrangesthewordsinlexicographicalorder.Words like 

‘the’, ‘is’, ‘there’ are very frequent words, whereas words 

like‘xylophone’,‘anthropology’etc.appearsrarely. 

 Itisnotawise ideatokeeplessfrequentwordsnearrootinbinarysearchtree. Instead 

of storing words in binary search tree in lexicographical order, we shall arrange 

them according to their probabilities. This arrangement facilitates few 

searches for frequent words as they would be near the root. Such tree is 

calledOptimalBinarySearch Tree. 

 ConsiderthesequenceofnkeysK=<k1,k2,k3,…,kn>ofdistinctprobabilityinsorted order 

such that 

k1<k2<…<kn.Wordsbetweeneachpairofkeyleadtounsuccessfulsearch,soforn keys, 

binary search tree contains n + 1 dummy keys di, representing unsuccessful searches. 



 

 

 

 

 
 TwodifferentrepresentationofBSTwithsamefivekeys{k1,k2,k3,k4,k5}probability is 

shown in following figure 

 With n nodes, there exist (2n)!/((n + 1)! * n!) different binary search trees. An 

exhaustivesearchforoptimalbinarysearch treeleadstohugeamountoftime. 

 The goal is to construct a tree which minimizes the total search cost. Such tree is 

calledoptimalbinarysearchtree.OBSTdoesnotclaimminimumheight.It isalsonot 

necessary that parent of sub tree has higher priority than its child. 

 Dynamicprogramming canhelpustofindsuchoptima tree. 
 

 
Binarysearchtreeswith5keys 

Mathematicalformulation 

 WeformulatetheOBSTwithfollowing observations 

 AnysubtreeinOBST containskeysinsortedorderki…kj,where1≤i≤j≤ n. 

 Subtreecontainingkeyski…kj hasleaveswithdummykeysdi-1….dj. 

 Supposekristherootofsubtreecontainingkeyski…..kj.So,leftsubtreeofroot kr 

contains keys 

ki….kr-1andrightsubtreecontainkeyskr+1tokj.Recursively,optimalsubtreesare 

constructed from the left and right sub trees of kr. 

 Lete[i,j]representstheexpected costofsearchingOBST. Withnkeys,ouraimisto find 

and minimize e[1, n]. 

 Basecaseoccurswhenj=i–1,becausewejusthavethedummykeydi-1forthis case. 

Expected search cost for this case would be e[i, j] = e[i, i – 1] = qi-1. 

 Forthecasej≥i,we havetoselectanykeykrfromki…kjasarootofthetree. 

 Withkrasarootkey andsubtreeki…kj,sumofprobability isdefinedas 

https://codecrucks.com/dynamic-programming/


 

 

 

 
 
 
 

 

 
 
 

 

 
(Actualkeystartsatindex1anddummykeystartsatindex0) 

 

Thus,arecursiveformulaforformingtheOBSTisstatedbelow: 
 

 

 
 

 
e[i,j]givestheexpectedcostintheoptimalbinarysearchtree. 

AlgorithmforOptimalBinarySearchTree 

Thealgorithmforoptimalbinary searchtree isspecifiedbelow: 

AlgorithmOBST(p, q,n) 

//e[1…n+1,0…n]: Optimalsubtree 

//w[1…n+1,0…n]:Sumofprobability 

//root[1…n,1…n]:UsedtoconstructOBST 
 

 
fori←1ton+1 do 

e[i,i–1]←qi–1 

w[i, i–1]←qi–1 

end 
 

 
form←1ton do 

fori←1ton–m+1 do 

j←i+m–1 e[i, 

j] ← ∞ 

w[i,j]←w[i,j–1]+pj+qj 

forr←itojdo 

t←e[i,r–1]+e[r+1,j]+w[i,j] 



 

 

 
ift<e[i,j]then 

e[i, j] ← t 

root[i, j] ← r 

end 

end 

end 

end 

return(e,root) 

ComplexityAnalysisofOptimalBinarySearchTree 

Itisverysimpletoderivethecomplexityofthisapproachfromtheabovealgorithm.It uses 

threenestedloops.Statementsin theinnermostloopruninQ(1)time.Therunningtimeof the 

algorithm is computed as 

 

 
Thus,theOBSTalgorithmrunsincubictime 

Example 

Problem:Let p (1:3)= (0.5,0.1,0.05)q(0:3)=(0.15,0.1,0.05,0.05)Computeand 

constructOBSTforabovevaluesusingDynamicapproach. 

Solution: 

Here,giventhat 
 

RecursiveformulatosolveOBST problemis 
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i 0 1 2 3 

pi 0.5 0.1 0.05 

qi 0.15 0.1 0.05 0.05 



 

 

 
 
 

 

Where, 

 

 

 
Initially, 

 

 

 
 
 
 
 
 

 



 

 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 
 

 

 
 

 

 

 

 
Now,we willcompute e[i,j] 

Initially, 

 

 
e[1,0]=q0=0.15(∵j=i–1) 

e[2,1]= q1=0.1 (∵j=i–1) 

e[3,2]=q2=0.05(∵j=i–1) 

e[4,3]=q3=0.05(∵j=i–1) 



 

 

 
 
 
 

 

 
 
 

 
e[1,1]=min{e[1,0]+e[2,1]+w(1,1)} 

=min{0.15+0.1+0.75}= 1.0 

e[2,2]=min{e[2,1]+e[3,2]+w(2,2)} 

=min{0.1+0.05+0.25}= 0.4 

e[3,3]=min{e[3,2]+e[4,3]+w(3,3) } 

=min{0.05+0.05+ 0.15}=0.25 
 

 

 



 

 

 
 
 
 

 

 
 

 
e[1,3]is minimumforr=1,so r[1,3]=1 

e[2,3]is minimumforr=2,so r[2,3]=2 

e[1,2]is minimumforr=1,so r[1,2]=1 

e[3,3]is minimumforr=3,so r[3,3]=3 

e[2,2]is minimumforr=2,so r[2,2]=2 
 

 

e[1, 1] is minimum for r = 1, so r[1, 1] = 1 

LetusnowconstructOBSTforgivendata. 

r[1,3] =1, so k1 will be at the root. 

k2….3 are on right side of k1 

r[2,3]=2,Sok2willbetherootofthissubtree. k3 will 

be on the right of k2. 

Thus,finally,weget. 



 

 

 
 
 
 
 

 
Greedy 

TechniqueActivitySelectio

n Problem 

ActivitySelection problemisaapproachofselectingnon-conflictingtasks basedon startand 

endtimeandcan besolved inO(N logN)timeusingasimplegreedyapproach.Modifications of this 

problem are complex and interesting which we will explore as well. Suprising, if we use a 

Dynamic Programming approach, the time complexity will be O(N^3) that is lower 

performance. 

The problem statement for Activity Selection is that "Given a set of n activities with their 

start and finish times, we need to select maximum number of non-conflicting activities that 

can be performed by a single person, given that the person can handle only one activity at a 

time." The Activity Selection problem follows Greedy approach i.e. at every step, we can 

make a choice that looks best at the moment to get the optimal solution of the complete 

problem. 

Our objective is to complete maximum number of activities. So, choosing the activity which 

is going to finish first will leave us maximum time to adjust the later activities. This is the 

intuition that greedily choosing the activity with earliest finish time will give us an optimal 

solution. By induction on the number of choices made, making the greedy choice at every 

step produces an optimal solution, so we chose the activity which finishes first. If we sort 

elements based on their starting time, the activity with least starting time could take the 

maximum duration for completion, therefore we won't be able to maximise number of 

activities. 

Algorithm 

ThealgorithmofActivitySelectionisasfollows: 

Activity-Selection(Activity, start, finish) 

SortActivitybyfinishtimesstoredinfinish 

Selected = {Activity[1]} 

n=Activity.length j 

= 1 

fori=2to n: 

ifstart[i]≥finish[j]: 

Selected=SelectedU{Activity[i]} j 

= i 

return Selected 



 

 

 
 
 
 
 
 

 
Complexity 

TimeComplexity: 

Whenactivitiesaresortedbytheirfinishtime:O(N) 

Whenactivitiesarenotsortedbytheirfinishtime,thetimecomplexityisO(N logN)dueto 

complexity of sorting 
 

Inthisexample,wetakethestartandfinishtimeofactivitiesasfollows: start = [1, 

3, 2, 0, 5, 8, 11] 

finish=[3,4,5, 7,9,10,12] 

Sorted by their finish time, the activity 0 gets selected. As the activity 1 has starting time 

whichisequaltothe finishtimeofactivity0, itgetsselected.Activities2and3havesmaller starting 

time than finish time of activity 1, so they get rejected. Based on similar comparisons, 

activities 4 and 6 also get selected, whereas activity 5 gets rejected. In this example, in all 

the activities 0, 1, 4 and 6 get selected, while others get rejected. 



 

 

 
 
 
 
 
 

 
OptimalMerge Pattern 

Mergea setofsortedfilesofdifferentlengthintoa singlesortedfile.Weneedtofindan optimal 

solution, where the resultant file will be generated in minimum time. 

Ifthenumberofsortedfilesaregiven,therearemanywaystomergethemintoasingle sorted 

file.This merge can be performed pairwise. Hence,this type ofmergingis called as 2-way 

merge patterns. 

As, different pairings require different amounts of time, in this strategy we want to 

determineanoptimalwayofmergingmanyfilestogether.Ateachstep,twoshortest sequences 

are merged. 

Tomergeap-recordfileandaq-recordfilerequirespossiblyp +qrecordmoves,the obvious 

choice being, merge the two smallest files together at each step. 

Two-way merge patterns can be represented by binary merge trees. Let us consider a set 

ofnsortedfiles{f1,f2,f3,…,fn}.Initially,eachelementofthisisconsideredasasinglenode binary 

tree. To find this optimal solution, the following algorithm is used. 

Algorithm:TREE(n) 

fori :=1ton– 1do 

declare new node 

node.leftchild := least (list) 

node.rightchild:=least(list) 

node.weight):=((node.leftchild).weight)+((node.rightchild).weight) insert 

(list, node); 

returnleast (list); 

Attheendofthisalgorithm,the weightoftherootnoderepresentstheoptimalcost. Example 

Letusconsiderthegivenfiles,f1,f2,f3,f4andf5with20,30,10,5and30numberof elements 

respectively. 

Ifmergeoperationsareperformedaccordingtotheprovidedsequence,then M1 = 

merge f1 and f2 => 20 + 30 = 50 

M2=mergeM1andf3=>50+10=60 M3 = 

merge M2 and f4 => 60 + 5 = 65 M4 

=mergeM3andf5=>65+30=95 



 

 

 

 
Hence,thetotalnumberofoperationsis 50 + 

60 + 65 + 95 = 270 

Now,thequestionarisesisthereanybetter solution? 

Sortingthenumbersaccordingtotheirsizeinanascendingorder, wegetthefollowing sequence − 

f4,f3,f1,f2,f5 

Hence,mergeoperationscanbeperformedonthissequence M1 

= merge f4 and f3 => 5 + 10 = 15 

M2=mergeM1andf1=>15+20=35 

M3=mergeM2andf2=>35+30=65 M4 

=mergeM3andf5=>65+30=95 

Therefore,thetotalnumberofoperationsis 15 + 

35 + 65 + 95 = 210 

Obviously,thisisbetterthanthepreviousone. 

Inthiscontext,wearenowgoingtosolvetheproblemusingthisalgorithm. Initial Set 

 

Step1 
 

 

 
Step2 

 



 

 

 
 
 
 
 
 

 
Step3 

 

Step4 

 

 
Hence,thesolutiontakes15+ 35+60+ 95= 205numberofcomparisons. 

Huffman Tree 

Huffman coding provides codes to characters such that the length of the code depends on 

the relative frequency or weight of the corresponding character. Huffman codes are of 

variable-length, and without any prefix (that means no code is a prefix of any other). Any 

prefix-free binary code can be displayed or visualized as a binary tree with the encoded 

characters stored at the leaves. 

Huffman tree or Huffman coding tree defines as a full binary tree in which each leaf of the 

tree corresponds to a letter in the given alphabet. 

The Huffman tree is treated as the binary tree associated with minimum external path 

weight that means, the one associated with the minimum sum of weighted path lengths for 

the given set of leaves. So the goal is to construct a tree with the minimum external path 

weight. 

Anexampleisgivenbelow- 

Letter frequency table 

Letter z k m c u d l e 



 

 

 
 

 

Frequency 2 7 24 32 37 42 42 120 

 
 

 
Huffmancode 

 

Letter Freq Code Bits 

e 120 0 1 

d 42 101 3 

l 42 110 3 

u 37 100 3 

c 32 1110 4 

m 24 11111 5 

k 7 111101 6 

z 2 111100 6 

 
 

 

TheHuffmantree(fortheaboveexample)isgivenbelow- 

Algorithm Huffman (c) 

{ 



 

 

 

n=|c| 

Q = c 

fori<-1to n-1 

 
do 

{ 

 
temp<-getnode() 

 
left(temp]Get_min(Q)right[temp]GetMin(Q) a = 

left [templ b = right [temp] 

F[temp]<-f[a]+[b] 

insert (Q, temp) 

} 

 
returnGet_min (0) 

} 



 

 

 
UNIT4 

Backtracking 

NqueenProblem 

N-Queensproblemistoplacen-queensinsuchamanneronannxn chessboardthatnoqueensattack each other by 

being in the same row, column or diagonal. 

Itcanbe seenthatforn=1,theproblemhasatrivialsolution,andnosolutionexistsforn=2andn=3.So first we will 

consider the 4 queens problem and then generate it to n - queens problem. 

Givena4x4chessboardandnumbertherowsandcolumnofthechessboard1through4. 
 

 
Since, we have to place 4 queens such as q1q2q3and q4on the chessboard, such that no two queens attack 

eachother.Insuch aconditionaleachqueenmustbe placedona different row,i.e.,weput queen"i"onrow "i." 

Now, we place queen q1 in the very first acceptable position (1, 1). Next, we put queen q2 so that both these 

queens do not attack each other. We find that if we place q2 in column 1 and 2, then the dead end is 

encountered. Thus the first acceptable position for q2 in column 3, i.e. (2, 3) but then no position is left for 

placing queen 'q3' safely. So we backtrack one step and place the queen 'q2' in (2, 4), the next best possible 

solution. Then we obtain the position for placing 'q3' which is (3, 2). But later this position also leads to adead 

end, and no place is found where 'q4' can be placed safely. Then we have to backtrack till 'q1' and place it to 

(1, 2) and then all other queens are placed safely by moving q2 to (2, 4), q3 to (3, 1) and q4 to (4, 3). That is, 

we get the solution (2, 4, 1, 3). This is one possible solution for the 4-queens problem. For anotherpossible 

solution, the whole method is repeated for all partial solutions. The other solutions for 4 - queens problems 

is (3, 1, 4, 2) i.e. 



 

 

 

 

 
Theimplicittreefor4-queenproblemforasolution(2,4,1,3)isasfollows: 

 

 
Figshowsthecompletestatespacefor4-queensproblem.But wecanusebacktrackingmethodtogenerate the 

necessary node and stop if the next node violates the rule, i.e., if two queens are attacking. 



 

 

 

 

4-Queenssolutionspacewithnodesnumberedin DFS 

Itcanbe seenthatallthe solutionstothe4queensproblemcanbe representedas4-tuples(x1,x2,x3,x4) where xi 

represents the column on which queen "qi" is placed. 

Onepossiblesolutionfor8queensproblemisshowninfig: 
 

1. Thus,thesolutionfor8-queenproblemfor(4,6,8,2,7,1,3,5). 

2. Iftwoqueensare placedatposition(i,j)and(k,l). 

3. Thentheyareonsamediagonalonlyif(i-j)= k-lori+ j=k +l. 

4. Thefirstequationimpliesthatj-l=i-k. 

5. Thesecondequationimpliesthatj-l=k-i. 

6. Therefore,twoqueenslieontheduplicatediagonalifandonlyif|j-l|=|i-k| 

Place (k, i) returns a Boolean value that is true if the kth queen can be placed in column i. It tests both 

whether i is distinct from all previous costs x1, x2, ... xk-1andwhetherthereisnootherqueenonthesame 
diagonal. 

Usingplace,wegiveaprecisesolutiontothenn-queens problem. 

1. Place(k, i) 

2. { DownloadedfromEnggTree.com 



 

 

 

3. Forj←1tok- 1 

4. doif(x[j]=i) 

5. or(Absx[j]) -i)=(Abs(j- k)) 

6. thenreturnfalse; 

7. returntrue; 

8.} 

Place(k,i)returntrueifaqueencanbe placedinthekthrowandithcolumnotherwisereturnisfalse. x [] is a 

global array whose final k - 1 values have been set. Abs (r) returns the absolute value of r. 

1. N-Queens(k,n) 

2. { 

3. Fori←1ton 

4. doifPlace(k,i)then 

5. { 

6. x[k]←i; 

7. if(k==n)then 

8. write(x[1 ..... n)); 

9. else 

10. N- Queens(k+1, n); 

11. } 

12.} 

 

HamiltonianCircuit 

TheHamiltoniancycleisthecycleinthegraphwhichvisitsalltheverticesingraphexactlyonceand terminates at the 

starting node. It may not include all the edges 

 TheHamiltoniancycleproblemistheproblemoffinding aHamiltoniancycleinagraphifthereexists any 

such cycle. 

 The input to the problem is an undirected, connected graph. For the graph shown in Figure (a), a 

pathA–B– E– D–C–AformsaHamiltoniancycle.Itvisitsall theverticesexactlyonce,but does not visit 

the edges <B, D>. 

 

 TheHamiltoniancycleproblemisalsoboth,decisionproblemandanoptimizationproblem.A 

decision problem is stated as, “Given a path, is it a Hamiltonian cycle of the graph?”. 

 Theoptimizationproblemisstatedas,“GivengraphG,findtheHamiltoniancycleforthegraph.” 

 WecandefinetheconstraintfortheHamiltoniancycleproblemas follows: 
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 1stand(n–1)thvertexmustbeadjacent(nthofcycleistheinitialvertexitself). 

 Verteximustnotappearinthefirst(i– 1)verticesofany path. 

 Withtheadjacencymatrixrepresentationofthegraph,theadjacencyoftwoverticescanbeverified in 

constant time. 

Algorithm 

HAMILTONIAN(i) 

//Description:SolveHamiltoniancycleproblemusingbacktracking. 

//Input:Undirected,connectedgraphG=<V,E>andinitialvertexi 

//Output:Hamiltoniancycle 

if 

FEASIBLE(i) 

then 

if 

(i==n-1) 

then 

PrintV[0…n– 1] 

else 

j ←2 

while 

(j ≤ n) 

do 

V[i] ← j 

HAMILTONIAN(i+1) 

j←j+1 end 

end 

end 

function 

FEASIBLE(i) 

flag←1 

for 

j ←1toi –1 

do 

if 

Adjacent(Vi,Vj) 

then 

flag←0 

end 

end 

if 

Adjacent(Vi,Vi-1) 

then 

flag←1 

else 
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flag←0 

end 

return 

flag 

 
ComplexityAnalysis 

Lookingatthe statespacegraph,inworstcase,totalnumberofnodesintreewouldbe, T(n) = 1 + 

(n – 1) + (n – 1)2 + (n – 1)3 + … + (n – 1)n–1 

=frac(n−1)n–1n–2 

T(n)=O(nn).Thus,theHamiltoniancyclealgorithmrunsinexponentialtime. 

 
Example:FindtheHamiltoniancyclebyusingthebacktrackingapproachforagivengraph. 

 

 

 
The backtracking approach uses a state-space tree to check if there exists a Hamiltonian cycle in the graph. 

Figure (g) shows the simulation of the Hamiltonian cycle algorithm. For simplicity, we have not explored all 

possible paths, the concept is self-explanatory. It is not possibleto include all the paths in the graph, so few 

ofthesuccessfulandunsuccessfulpathsaretracedinthe graph.BlacknodesindicatetheHamiltoniancycle. 

 

SubsetSum Problem 
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SumofSubsetsProblem:Givenasetofpositiveintegers,findthe combinationofnumbersthatsumtogiven value M. 

Sumofsubsetsproblemisanalogoustotheknapsackproblem.TheKnapsackProblemtriestofillthe knapsack 

using a given set of items to maximize the profit. Items are selected in such a way that the total weight in 

the knapsack does not exceed the capacity of the knapsack. The inequality condition in the knapsack 

problem is replaced by equality in the sum of subsets problem. 

Given the set of n positive integers, W = {w1, w2, …, wn}, and given a positive integer M, the sum of the 

subsetproblemcanbeformulatedasfollows(wherewiandMcorrespondtoitemweightsandknapsack capacity in 

the knapsack problem): 
 

Where, 
 

Numbers are sorted in ascending order, such that w1< w2< w3< …. < wn. The solution is often represented 

using the solution vector X. If the ithitemis included, set xito 1 else set it to 0. Ineach iteration, oneitem is 

tested.Iftheinclusionofanitemdoesnotvioletthe constraintoftheproblem,addit.Otherwise,backtrack, 

removethepreviouslyaddeditem,andcontinuethe sameprocedurefor allremainingitems.Thesolutionis easily 

described by the state space tree. Each left edge denotes the inclusion of wi and the right edge denotes the 

exclusionof wi. Any path fromthe root to the leaf forms asubset. Astate-space tree for n = 3 is demonstrated 

in Fig. (a). 
 

 
Fig.(a):Statespacetreeforn= 3 

AlgorithmforSumofsubsets 

Thealgorithmforsolvingthesumofsubsetsproblemusingrecursionisstatedbelow: 

https://codecrucks.com/binary-knapsack-problem-using-greedy-algorithm/
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Examples 
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GraphColouring 

 
In this problem,an undirected graphis given.Thereis alsoprovided m colors.Theproblem isto find if itis 

possibletoassignnodeswithmdifferentcolors,suchthatnotwoadjacentverticesofthegraphare ofthe same 

colors. If the solution exists, then display which color is assigned on which vertex. 

Starting from vertex0, wewill try to assign colors one by one to different nodes. But before assigning, we 

havetocheckwhetherthecolorissafeornot.Acolorisnotsafewhetheradjacentverticesare containing the same 

color. 

InputandOutput Input: 

TheadjacencymatrixofagraphG(V,E)andanintegerm,whichindicatesthemaximumnumberofcolors that can be 

used. 

 

Letthemaximumcolorm=3. 

Output: 

Thisalgorithmwillreturnwhichnodewillbe assignedwithwhichcolor.Ifthesolutionisnotpossible,it will return false. 

Forthisinputtheassignedcolors are: 
Node0-> color1 

Node1-> color2 

Node2-> color3 

Node3-> color2 

 

Algorithm 

isValid(vertex,colorList,col) 

Input−Vertex,colorListtocheck,andcolor,whichistryingtoassign. 

Output−Trueifthecolorassigningisvalid,otherwisefalse. 

Begin 

forallverticesvofthegraph,do 

ifthereisanedgebetweenvandi,andcol=colorList[i],then return false 

done 

returntrue 

End DownloadedfromEnggTree.com 
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graphColoring(colors,colorList,vertex) 

Input−Mostpossiblecolors,thelistforwhichverticesarecoloredwithwhichcolor,andthestartingvertex. 

Output−True,whencolorsareassigned,otherwisefalse. 

Begin 

ifallverticesarechecked,then 

return true 

forallcolorscolfromavailablecolors,do if 

isValid(vertex, color, col), then 

addcoltothecolorListfor vertex 

ifgraphColoring(colors,colorList,vertex+1)=true,then return 

true 

removecolorforvertex done 

returnfalse 
 

 

End 

 

BranchandBound 
Solving15puzzleProblem(LCBB) 
The problem cinsist of 15numbered (0-15) tiles ona square box with16 tiles(one tile is blank or empty). 

Theobjective ofthisproblemistochange thearrangementofinitialnodetogoalnodebyusing seriesof legal 

moves. 

TheInitialandGoalnodearrangementisshownbyfollowingfigure. 
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InitialArrangement FinalArrangement 

 

 
Ininitial nodefourmovesarepossible.Usercanmoveanyoneofthetilelike2,or 3,or5,or6totheempty tile. From 

this we have four possibilities to move from initial node. 

Thelegalmovesareforadjacenttilenumberisleft,right,up,down,onesatatime. 

Each and every move creates a new arrangement, and this arrangement is called state of puzzle problem. 

Byusingdifferentstates,astatespacetreediagramiscreated,inwhichedgesarelabeledaccordingtothe direction 

in which the empty space moves. 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15  

 

1 2 4 15 

2  5 12 

7 6 11 14 

8 9 10 13 

 



EnggTree.com 

DownloadedfromEnggTree.com 

 

 

 

 
Thestatespacetreeisverylargebecauseitcanbe16!Differentarrangements. 

Instatespacetree,nodesarenumberedasperthe level.Ineachlevelwemustcalculatethevalue or cost of 

each node by using given formula: 

C(x)=f(x)+g(x), 

f(x)islengthofpathfromrootorinitialnodetonodex, 

g(x)isestimatedlengthofpathfromxdownwardtothegoalnode.Numberofnonblank tilenotin their 

correct position. 

C(x)<Infinity.(initiallysetbound). 

Eachtimenodewithsmallestcost isselectedforfurtherexpansiontowardsgoalnode.Thisnode become 

the e-node. 

 
StateSpacetreewithnodecostisshownin diagram. 

 
 

 

 
 

AssignmentProblem 
ProblemStatement 

Let’sfirstdefine ajobassignment problem.Inastandardversionofajobassignment problem,there canbe

 jobsand workers.Tokeepitsimple,we’retaking jobs and workersinourexample: 
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Wecanassignanyofthe availablejobstoanyworkerwiththeconditionthatifajobisassignedtoa worker, 

the other workers can’t take that particular job. We should also notice that each job has some cost 

associated with it, and it differs from one worker to another. 

Herethemainaimistocomplete allthejobsby assigningonejobtoeachworkerinsuchawaythat the sum 

of the cost of all the jobs should be minimized. 

BranchandBoundAlgorithmPseudocode 

Nowlet’sdiscusshowtosolvethejobassignmentproblemusingabranchandboundalgorithm. Let’s see 

the pseudocode first: 

 

 
Here,is the input cost matrix that contains information like the number ofavailable jobs, a list of 

available workers, and the associated cost for each job. The function MinCost() maintains a list of 

active nodes. The function Leastcost()calculates the minimum cost of the active node at each level of 

the tree. After finding the node with minimum cost, we remove the node from the list of active 

nodes and return it. 

We’re using the add() function in the pseudocode, which calculates the cost of a particular node and 

adds it to the list of active nodes. 

In the search space tree, each node contains some information, such as cost, a total number of jobs, 

as well as a total number of workers. 

Nowlet’srunthealgorithmonthesampleexamplewe’vecreated: 
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Advantages 

Inabranchandboundalgorithm,wedon’t exploreallthe nodesinthetree.That’swhythetime complexity 

of the branch and bound algorithm is less when compared with other algorithms. 

Iftheproblemisnotlargeandifwecandothebranching inareasonableamount oftime,itfindsan optimal 

solution for a given problem. 

Thebranchandboundalgorithmfindaminimalpathtoreachtheoptimalsolutionforagiven problem. It 

doesn’t repeat nodes while exploring the tree. 

Disadvantages 

Thebranchandbound algorithmaretime-consuming.Dependingonthe sizeofthegivenproblem, the 

number of nodes in the tree can be too large in the worst case. 

 

KnapsackProblemusingbranchandbound 
ProblemStatement 

Weare a givenasetofnobjectswhichhaveeachhavea valuevianda weightwi. Theobjectiveof 

the0/1Knapsackproblemistofindasubsetofobjectssuchthatthetotalvalueismaximized,and 

 

 
thesumofweightsoftheobjectsdoesnotexceedagiventhresholdW.Animportant conditionhere is that 

one can either take the entire object or leave it. It is not possible to take a fraction of the object. 
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Consideranexamplewheren=4,andthevaluesaregivenby {10,12,12, 18}andtheweightsgiven by {2, 4, 

6, 9}. The maximum weight is given by W = 15. Here, the solution to the problem will be including 

the first, third and the fourth objects. 

 

 
Here,theproceduretosolvetheproblemisasfollows are: 

 Calculatethe costfunctionandtheUpperboundforthetwochildrenofeachnode.Here, the (i + 

1)th level indicates whether the ith object is to be included or not. 

 If the cost function for a given node is greater than the upper bound, then the node neednot 

be explored further. Hence, we can kill this node. Otherwise, calculate the upper bound 

forthisnode.IfthisvalueislessthanU,thenreplacethe valueofUwiththisvalue.Then,kill all 

unexplored nodes which have cost function greater than this value. 

 Thenextnodetobecheckedafterreachingallnodesinaparticularlevelwillbe theonewith the least 

cost function value among the unexplored nodes. 

 Whileincludinganobject,oneneedstocheckwhethertheadding theobjectcrossedthe 

threshold. If it does, one has reached the terminal point in that branch, and all the 

succeeding objects will not be included. 

 
 

 
TimeandSpaceComplexity 

Even though this method is more efficient than the other solutions to this problem, its worst case 

timecomplexityisstillgivenbyO(2n),incaseswheretheentiretreehastobeexplored.However,in its best 

case, only one path through the tree will have to explored, and hence its best case time complexity 

isgivenby O(n).Sincethis method requiresthecreationofthestatespacetree, itsspace complexity will 

also be exponential. 

 
SolvinganExample 

Considerthe problemwithn=4, V ={10,10,12, 18}, w={2,4,6,9}andW= 15.Here,wecalculate the initital 

upper bound to be U = 10 + 10 + 12 = 32. Note that the 4th object cannot be included here, since 

that would exceed W. For the cost, we add 3/9 th of the final value, and hence the cost function is 

38. Remember to negate the values after calculation before comparison. 

Aftercalculatingthecost ateachnode,killnodesthat donotneedexploring.Hence,thefinalstate space 

tree will be as follows (Here, the number of the node denotes the order in which the state space 

tree was explored): 
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Note here that node 3 and node 5 have been killed after updating U at node 7. Also, node 6 is not 

explored further, since adding any more weight exceeds the threshold. At the end, only nodes 6 and 

8remain. SincethevalueofU islessfor node8,weselect thisnode.Hencethesolutionis{1,1,0,1}, and we 

can see here that the total weight is exactly equal to the threshold value in this case. 

 

Travellingsalesmanproblem 
 TravellingSalesmanProblem(TSP)isaninterestingproblem.Problemisdefinedas“givenn cities 

and distance between each pair of cities, find out the path which visits each city 

exactlyonceandcomebacktostartingcity, withtheconstraintofminimizing thetravelling 

distance.” 

 TSPhasmanypracticalapplications.Itisusedinnetworkdesign,andtransportationroute 

design. The objective is to minimize the distance. We can start tour fromany randomcity 

and visit other cities in any order. With n cities, n! different permutations are possible. 

Exploring all paths using brute force attacks may not be useful in real life applications. 

LCBBusingStaticStateSpaceTreeforTravellingSalsemanProblem 

 Branchand boundisaneffectivewaytofindbetter,ifnotbest,solutioninquicktime by pruning 

some of the unnecessary branches of search tree. 

 Itworksasfollow: 

ConsiderdirectedweightedgraphG=(V,E,W),wherenode representscitiesand weighted directed 

edges represents direction and distance between two cities. 

1. Initially,graphisrepresentedbycostmatrixC,where 

Cij=cost ofedge,ifthereisadirectpathfromcityitocityj Cij=∞, if 

there is no direct path from city i to city j. 
2. Convertcostmatrixtoreducedmatrixbysubtractingminimumvaluesfromappropriaterows and 

columns, such that each row and column contains at least one zero entry. 

https://codecrucks.com/branch-and-bound-the-dummies-guide/
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3. Findcostofreducedmatrix.Costisgivenby summationofsubtractedamountfromthecost matrix 

to convert it in to reduce matrix. 

4. Preparestatespacetreeforthereducematrix 

5. FindleastcostvaluednodeA(i.e.E-node),bycomputingreducedcostnodematrix withevery 

remaining node. 

6. If<i,j>edgeistobeincluded,thendofollowing: 

(a) SetallvaluesinrowiandallvaluesincolumnjofAto∞ 

(b) SetA[j,1]= ∞ 

(c) ReduceAagain,exceptrowsandcolumnshavingall∞entries. 

7. Computethecostofnewlycreatedreducedmatrixas, 

Cost=L + Cost(i, j) + r 

Where,LiscostoforiginalreducedcostmatrixandrisA[i,j]. 

8. Ifallnodesarenotvisitedthengotostep4. 

Reduction procedure is described below : 

RawReduction: 

MatrixMis calledreducedmatrixif eachof itsrowandcolumnhasatleastonezeroentryorentire row or 

entire column has ∞ value. Let M represents the distance matrix of 5 cities. M can be reduced as 

follow: 

MRowRed={Mij– min{Mij|1≤ j≤n,and Mij< ∞}} 

Consider the following distance matrix: 

 
 
 
 
 
 

 
Findtheminimumelementfromeachrowand subtractitfromeachcellof matrix. 

 

 
Reducedmatrixwouldbe: 

 

Rowreductioncostisthesummationofallthevaluessubtractedfromeachrows: Row 

reduction cost (M) = 10 + 2 + 2 + 3 + 4 = 21 

Columnreduction: 

MatrixMRowRedisrowreducedbut notthecolumnreduced.Matrixiscalledcolumnreducedifeach of its 

column has at least one zero entry or all ∞ entries. 
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MColRed={Mji–min{Mji|1≤j≤n, andMji<∞ }} 

Toreducedabovematrix,wewillfindtheminimumelementfromeachcolumnand subtractit from each 

cell of matrix. 
 

 
ColumnreducedmatrixMColRedwouldbe: 

 

 
Eachrowand columnofMColRed hasatleastonezeroentry,sothismatrixisreducedmatrix. Column 

reduction cost (M) = 1 + 0 + 3 + 0 + 0 = 4 

Statespacetreefor5cityproblemisdepictedinFig.6.6.1.Numberwithincircleindicatestheorder in which 

the node is generated, and number of edge indicates the city being visited. 

 

 

 
Example 

Example:Findthesolutionoffollowingtravellingsalesmanproblemusingbranchandbound method. 
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Solution: 

 Theprocedurefordynamicreductionisasfollow: 

 Drawstatespacetreewithoptimalreductioncostatrootnode. 

 Derivecost ofpathfromnodeitojbysettingallentriesinithrowandjthcolumnas∞. Set M[j][i] 

= ∞ 

 Costofcorresponding nodeNforpathitojissummationofoptimalcost +reductioncost+ M[j][i] 

 Afterexploringall nodesat leveli,setnodewithminimumcost asEnodeandrepeatthe 

procedure until all nodes are visited. 

 Givenmatrixisnotreduced. Inordertofindreducedmatrix of it,wewillfirstfindtherow 

reduced matrix followed by column reduced matrix if needed. We can find row reduced 

matrixbysubtractingminimum elementofeachrowfromeachelementofcorresponding row. 

Procedure is described below: 

 Reduceabovecostmatrixbysubtractingminimumvaluefromeachrowandcolumn. 
 
 
 
 
 
 
 
 
 
 

 

 

 
M‘1 

 

 
isnotreducedmatrix.Reduceitsubtractingminimumvaluefromcorrespondingcolumn.Doingthis we 

get, 
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CostofM1=C(1) 

=Rowreductioncost+Columnreductioncost 

=(10+2+2+3+4)+(1+3)=25 

Thismeansalltoursingraphhaslengthatleast25.Thisistheoptimalcostofthepath. 

Statespacetree 
 

 
Letusfindcostofedge fromnode1to2,3,4,5. 

Selectedge1-2: 

SetM1[1][]=M1[][2]=∞ Set 

M1[2] [1] = ∞ 
Reducetheresultantmatrixifrequired. 

 

 

 
M2isalreadyreduced. 

Cost of node 2 : 

C(2)=C(1)+Reductioncost +M1[1][2] 

=25+0+10=35 

Selectedge1-3 

SetM1[1][]=M1[][3]=∞ Set M1 

[3][1] = ∞ 

Reducetheresultantmatrixifrequired. 
 

 
Costofnode3: 

C(3)=C(1)+Reductioncost +M1[1][3] 

=25+11+17=53 
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Selectedge1-4: 

SetM1[1][]=M1[][4]=∞ Set 

M1 [4][1] = ∞ 

Reduceresultantmatrixifrequired. 

 
MatrixM4isalreadyreduced. Cost 

of node 4: 

C(4)=C(1)+Reductioncost +M1[1][4] 

=25+0+0=25 

Selectedge1-5: 

SetM1[1][]=M1[][5]=∞ Set 

M1 [5] [1] = ∞ 

Reducetheresultantmatrixifrequired. 
 

 
Costofnode5: 

C(5)=C(1)+reductioncost +M1[1][5] 

=25+5+1=31 

Statespacediagram: 

 
Node4hasminimumcost forpath1-4.Wecangotovertex2,3 or5.Let’sexploreallthreenodes. 

Selectpath1-4-2:(Addedge4-2) 

SetM4[1][]=M4[4][]=M4[] [2]=∞ Set M4 [2] 

[1]=∞ 

Reduceresultantmatrixifrequired. 
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MatrixM6isalreadyreduced. 

Cost of node 6: 

C(6)=C(4)+Reductioncost +M4[4][2] 

=25+0+3=28 

Selectedge4-3(Path1-4-3): 

SetM4[1][]=M4[4][]= M4[][3]=∞ Set M 

[3][1]=∞ 

Reducetheresultantmatrixifrequired. 
 

 
M‘7 

 
isnotreduced.Reduceitbysubtracting11fromcolumn1. 

 

Costofnode7: 

C(7)=C(4)+Reductioncost +M4[4][3] 

=25+2+11+12=50 

Selectedge4-5(Path1-4-5): 
 

 
MatrixM8isreduced. Cost 

of node 8: 

C(8)=C(4)+Reductioncost +M4[4][5] 

=25+11+0=36 

Statespacetree 
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Path1-4-2leadstominimumcost.Let’sfindthecostfortwopossiblepaths. 
 

 
Addedge2-3(Path1-4-2-3): 

SetM6 [1][ ]=M6 [4][] =M6[2][ ] 

=M6 [][3]=∞ 

SetM6[3][1]=∞ 

Reduceresultantmatrixifrequired. 
 

 

 

 
Costofnode9: 

C(9)=C(6)+Reductioncost +M6[2][3] 

=28+11+2+11=52 

Addedge2-5(Path1-4-2-5): 

SetM6[1][]= M6[4][]=M6[2][]=M6[][5]=∞ Set M6 

[5][1] = ∞ 

Reduceresultantmatrixifrequired. 
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Costofnode10: 

C(10)=C(6)+Reductioncost+M6[2][5] 

=28+0+0=28 

Statespacetree 
 
 

 

 
 
 
 
 
 
 
 

 
Addedge5-3(Path1-4-2-5-3): 

 

 
Costofnode11: 

C(11)=C(10)+Reductioncost+M10[5][3] 
=28+0+0=28 



 

 

Statespacetree: 
 

 
Sowecanselectany oftheedge.Thusthefinalpathincludestheedges<3,1>,<5,3>,<1,4>,<4,2>, 

<2,5>,thatformsthe path1– 4–2 –5– 3–1.Thispathhascost of28. 



 

 

UNIT5 

TractableandIntractableProblems 

Tractableproblemsrefertocomputationalproblemsthatcanbesolvedefficientlyusingalgorithms that 

can scale with the input size of the problem. In other words, the time required to solve a tractable 

problem increases at most polynomially with the input size. 

Onthe otherhand,intractableproblemsarecomputationalproblemsforwhichnoknownalgorithm can 

solve them efficiently in the worst-case scenario. This means that the time required to solve an 

intractable problem grows exponentially or even faster with the input size. 

Oneexampleofa tractableproblemis computingthesumofa list of nnumbers.The timerequired to 

solve this problem scales linearly with the input size, as each number can be added to a running 

total in constant time. Another example is computing the shortest path between two nodes in a 

graph,whichcanbesolvedefficientlyusingalgorithmslikeDijkstra'salgorithmortheA*algorithm. 

In contrast, some well-known intractable problems include the traveling salesman problem, the 

knapsack problem, and the Boolean satisfiability problem. These problems are NP-hard, meaning 

that any problem in NP (the set of problems that can be solved in polynomial time using a non- 

deterministicTuringmachine)canbe reducedtotheminpolynomial time.Whileit ispossibletofind 

approximatesolutionstotheseproblems,thereisnoknownalgorithmthatcansolvethemexactlyin 

polynomial time. 

In summary, tractable problems are those that can be solved efficiently with algorithms that scale 

wellwiththeinput size,whileintractableproblemsarethosethatcannotbesolvedefficiently inthe worst-

case scenario. 

ExamplesofTractableproblems 

1. Sorting:Givenalistofnitems,thetaskistosorttheminascendingordescending order. 

Algorithms like QuickSort and MergeSort can solve this problem in O(n log n) time 

complexity. 

2. Matrixmultiplication:GiventwomatricesAandB,thetaskistofindtheirproductC=AB. The 

best-known algorithm for matrix multiplication runs in O(n^2.37) time complexity, which 

is considered tractable for practical applications. 

3. Shortest path in a graph: Given a graph G and two nodes s and t, the task is to find the 

shortestpathbetweensandt.AlgorithmslikeDijkstra'salgorithmandtheA* algorithmcan 

solvethisprobleminO(m+nlogn) timecomplexity,wheremis thenumberofedgesand n is the 

number of nodes in the graph. 

4. Linearprogramming:Givenasystemoflinearconstraintsandalinearobjectivefunction,the task is 

to find the values of the variables that optimize the objective function subject to the 

constraints. Algorithms like the simplex method can solve this problem in polynomial time. 

5. Graph coloring: Given an undirected graph G, the task is to assign a color to each node such 

thatno two adjacentnodeshavethesame color,using asfewcolorsas possible.The greedy 

algorithmcansolvethisprobleminO(n^2)time complexity,wherenisthenumberofnodes in the 

graph. 



 

 

Theseproblemsare consideredtractablebecausealgorithmsexistthatcansolvetheminpolynomial time 

complexity, which means that the time required to solve them grows no faster than a polynomial 

function of the input size. 

 

 
Examplesofintractableproblems 

1. Travelingsalesmanproblem(TSP):Givenasetofcitiesandthedistancesbetweenthem,the taskis 

tofindtheshortestpossibleroutethatvisitseachcityexactlyonceandreturns tothe starting city. 

The best-known algorithms for solving the TSP have an exponential worst-case time 

complexity, which makes it intractable for large instances of the problem. 

2. Knapsack problem:Given a setof items with weights and values, and a knapsackthat can 

carry amaximumweight,the taskis to find themostvaluable subsetofitemsthatcan be 

carriedbytheknapsack.TheknapsackproblemisalsoNP-hardand isintractableforlarge 

instances of the problem. 

3. Boolean satisfiability problem (SAT): Given a boolean formula in conjunctive normal form 

(CNF),thetaskis todetermineif thereexistsanassignment oftruthvaluestothe variables 

thatmakestheformulatrue.TheSATproblemisoneofthemostwell-knownNP-complete 

problems, which means that any NP problem can be reduced to SAT in polynomial time. 

4. Subsetsumproblem:Givenasetofintegersandatargetsum,thetaskistofindasubsetof the 

integers that sums up to the target sum. Like the knapsack problem, the subset sum 

problem is also intractable for large instances of the problem. 

5. Graphisomorphismproblem:GiventwographsG1andG2,thetaskistodetermineifthere 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1. Linearsearch:Givenalistofnitems,thetaskistofindaspecificiteminthe list.Thetime 

complexity of linear search is O(n), which is a polynomial function of the input size. 



 

 

2. Bubble sort:Givenalistofnitems,thetaskistosorttheminascendingordescendingorder. The time 

complexity of bubble sort is O(n^2), which is also a polynomial function of theinput size. 

3. Shortest path in a graph: Given a graph G and two nodes s and t, the task is to find the 

shortestpathbetweensandt.AlgorithmslikeDijkstra'salgorithmandtheA* algorithmcan solve 

this problem in O(m + n log n) time complexity, which is a polynomial function of the input 

size. 

4. Maximum flow in a network: Given a network with a source node and a sink node, and 

capacities on the edges, the task is to find the maximum flow from the source to the sink. 

The Ford-Fulkerson algorithm can solve this problem in O(mf), where m is the number of 

edgesinthenetworkandfisthemaximumflow,whichisalsoapolynomialfunctionofthe input 

size. 

5. Linearprogramming:Givenasystemoflinearconstraintsandalinearobjectivefunction,the task is 

to find the values of the variables that optimize the objective function subject to the 

constraints. Algorithms like the simplex method can solve this problem in polynomial time. 

 

 
P(Polynomial)problems 

P problems refer to problemswhere an algorithmwould take a polynomial amount of time 

tosolve,orwhereBig-Oisapolynomial(i.e.O(1),O(n),O(n²),etc).Theseare problemsthat would 

be considered ‘easy’ to solve, and thus do not generally have immense run times. 

NP(Non-deterministicPolynomial)Problems 

NPproblemswerealittleharderformetounderstand,but Ithinkthisiswhattheyare.In terms of 

solving a NP problem, the run-time would not be polynomial. It would be something like 

O(n!) or something much larger. 

NP-HardProblems 

A problem is classified as NP-Hard when an algorithm for solving it can be translated to 

solveanyNPproblem.Thenwecansay,thisproblemisat leastashardasanyNPproblem, but it 

could be much harder or more complex. 

NP-CompleteProblems 

NP-CompleteproblemsareproblemsthatliveinboththeNPandNP-Hardclasses.This means 

that NP-Completeproblems can be verified in polynomial time and that any NP 

problem can be reduced to this problem in polynomial time. 

 



 

 

 
BinPackingproblem 

BinPackingprobleminvolvesassigningnitemsofdifferentweightsandbinseachofcapacity c to a 

bin such that number of total used bins is minimized. It may be assumed that all items have 

weights smaller than bin capacity. 

Thefollowing4 algorithmsdependonthe orderoftheirinputs.Theypackthe itemgiven first and 

then move on to the next input or next item 

1) NextFitalgorithm 

The simplest approximate approach to the bin packing problem is the Next-Fit (NF) 

algorithm which is explained later in this article. The first item is assigned to bin 1. Items 

2,...,narethenconsideredbyincreasingindices:eachitemisassignedtothe currentbin,if it fits; 

otherwise, it is assigned to a new bin, which becomes the current one. 

VisualRepresentation 

Letusconsiderthesameexampleasusedaboveandbinsofsize1 

Assumingthesizesoftheitemsbe{0.5,0.7,0.5,0.2,0.4,0.2,0.5,0.1, 0.6}. 

TheminimumnumberofbinsrequiredwouldbeCeil((TotalWeight)/(BinCapacity))= Celi(3.7/1) 

= 4 bins. 

The Next fit solution (NF(I))for this instance I would be- 

Considering0.5sizeditemfirst,wecanplaceitinthefirstbin 

 
 
 
 
 

 
Movingontothe0.7sizeditem,wecannotplaceit inthefirstbin.Hence weplace itina new bin. 

 



 

 

Movingontothe0.5sizeditem,wecannotplaceit inthecurrentbin.Henceweplaceit ina new bin. 

 

Movingontothe0.2sizeditem,wecanplaceitinthecurrent(third bin) 

 
Similarly,placingalltheotheritemsfollowingtheNext-Fitalgorithmweget- 

 

Thusweneed6 binsasopposedtothe4 binsofthe optimalsolution.Thuswecanseethat this 

algorithm is not very efficient. 

AnalyzingtheapproximationratioofNext-Fitalgorithm 

ThetimecomplexityofthealgorithmisclearlyO(n).Itiseasytoprove that,foranyinstance I of 

BPP,the solution value NF(I) provided by the algorithm satisfies the bound 

NF(I)<2z(I) 

wherez(I)denotestheoptimalsolutionvalue.Furthermore,thereexistinstancesforwhich the 

ratio NF(I)/z(I) is arbitrarily close to 2, i.e. the worst-case approximation ratio of NF is r(NF) 

= 2. 

Psuedocode 

NEXTFIT(size[],n,c) 

size[]isthearraycontaingthesizesofthe items,nisthenumberofitemsandcisthe capacity of the 

bin 

{ 

Initializeresult(Countofbins)andremainingcapacityincurrentbin. res = 0 

bin_rem=c 

Placeitemsonebyone 

for(inti=0;i <n;i++){ 

//Ifthisitemcan'tfitincurrentbin if 

(size[i] > bin_rem) { 



 

 

Useanewbin 

res++ 

bin_rem=c-size[i] 

} 

else 

bin_rem-=size[i]; 

} 

returnres; 

} 

2) FirstFitalgorithm 

A better algorithm, First-Fit (FF), considers the items according to increasing 

indicesandassignseachitemtothelowestindexedinitializedbinintowhichit fits; only 

when the current item cannot fit into any initialized bin, is a new bin introduced 

VisualRepresentation 

Letusconsiderthesameexampleasusedaboveandbinsofsize1 

Assumingthesizesoftheitemsbe{0.5,0.7,0.5,0.2,0.4,0.2,0.5,0.1, 0.6}. 

TheminimumnumberofbinsrequiredwouldbeCeil((TotalWeight)/(BinCapacity))= Celi(3.7/1) 

= 4 bins. 

The First fit solution (FF(I))for this instance I would be- 

Considering0.5sizeditemfirst,wecanplaceitinthefirstbin 

 
 
 

 
Movingontothe0.7sizeditem,wecannotplaceit inthefirstbin.Hence weplace itina new bin. 

 

Movingontothe0.5sizeditem,wecanplaceitinthefirstbin. 



 

 

Movingontothe0.2sizeditem, wecanplaceit inthefirstbin, wecheckwiththesecondbin and we 

can place it there. 

 

Movingontothe0.4sizeditem,wecannotplaceit inanyexistingbin. Henceweplaceit ina new bin. 

 

 
Similarly,placingalltheotheritemsfollowingtheFirst-Fitalgorithmweget- 

 

 
Thusweneed5 binsasopposedtothe4 binsofthe optimalsolutionbut ismuchmore efficient 

than Next-Fit algorithm. 

AnalyzingtheapproximationratioofNext-Fitalgorithm 

IfFF(I)istheFirst-fitimplementationforIinstanceandz(I)isthemostoptimalsolution,then: 
 

Itcanbeseenthatthe FirstFitneverusesmorethan1.7*z(I)bins. SoFirst-Fitisbetterthan Next Fit 

in terms of upper bound on number of bins. 

Psuedocode 

FIRSTFIT(size[],n, c) 

{ 

size[]isthearraycontaingthesizesofthe items,nisthenumberofitemsandcisthe capacity of the 

bin 

 
/Initializeresult(Countofbins) 



 

 

res=0; 

Createanarraytostoreremainingspaceinbinstherecanbeatmostnbins bin_rem[n]; 

 
Plae items one by one 

for(inti=0;i<n;i++){ 

Findthefirstbinthatcanaccommodateweight[i] int j; 

for(j=0;j <res;j++){ 

if (bin_rem[j] >= size[i]) { 

bin_rem[j]=bin_rem[j]-size[i]; 

break; 

} 

} 

 
Ifnobincouldaccommodatesize[i] if 

(j == res) { 

bin_rem[res]=c-size[i]; 

res++; 

} 

 
} 

returnres; 

} 

 
3) BestFitAlgorithm 

The next algorithm, Best-Fit (BF), is obtained from FF by assigning the current 

itemtothefeasiblebin(ifany)havingthesmallestresidualcapacity(breaking ties in 

favor of the lowest indexed bin). 

Simplyput,theideaistoplacesthenextiteminthetightestspot.Thatis,put itinthe binso that the 

smallest empty space is left. 

VisualRepresentation 

Letusconsiderthesameexampleasusedaboveandbinsofsize1 

Assumingthesizesoftheitemsbe{0.5,0.7,0.5,0.2,0.4,0.2,0.5,0.1, 0.6}. 

TheminimumnumberofbinsrequiredwouldbeCeil((TotalWeight)/(BinCapacity))= Celi(3.7/1) 

= 4 bins. 

TheFirstfitsolution(FF(I))forthisinstanceIwouldbe- 



 

 

Considering0.5sizeditemfirst,wecanplaceitinthefirstbin 

Movingontothe0.7sizeditem,wecannotplaceit inthefirstbin.Hence weplace itina new bin. 

 

Movingontothe0.5sizeditem,wecanplaceitinthefirstbin tightly. 

Movingontothe0.2sizeditem,wecannotplaceit inthefirstbin butwecanplace itin second bin 

tightly. 

 

Movingontothe0.4sizeditem,wecannotplaceit inanyexistingbin. Henceweplaceit ina new bin. 

 

Similarly,placingalltheotheritemsfollowingtheFirst-Fitalgorithmweget- 
 

Thusweneed5 binsasopposedtothe4 binsofthe optimalsolutionbut ismuchmore efficient 

than Next-Fit algorithm. 

AnalyzingtheapproximationratioofBest-Fitalgorithm 



 

 

ItcanbenotedthatBest-Fit(BF),isobtainedfromFFbyassigningthecurrentitemtothe feasible 

bin (if any) having the smallest residual capacity (breaking ties in favour of the lowest 

indexed bin). BF satisfies the same worst-case bounds as FF 

 
 

 
AnalysisOfupper-boundofBest-Fitalgorithm 

Ifz(I)istheoptimalnumberofbins,thenBestFitneverusesmorethan2*z(I)-2bins. So Best Fit is 

same as Next Fit in terms of upper bound on number of bins. 

Psuedocode 

BESTFIT(size[],n,c) 

{ 

size[]isthearraycontaingthesizesofthe items,nisthenumberofitemsandcisthe capacity of the 

bin 

Initializeresult(Countofbins) res 

= 0; 

 
Createanarraytostoreremainingspaceinbinstherecanbeat mostnbins 

bin_rem[n]; 

 
Placeitemsonebyone 

for(inti=0;i <n;i++){ 

 
Findthebestbinthatcanaccommodateweight[i] int j; 

Initializeminimumspaceleftandindexofbestbin int 

min = c + 1, bi = 0; 

 
for(j=0;j <res;j++){ 

if(bin_rem[j]>=size[i]&&bin_rem[j]-size[i]<min){ bi = j; 

min=bin_rem[j]-size[i]; 

} 

} 

 
Ifnobincouldaccommodateweight[i],createanewbin if 

(min == c + 1) { 

bin_rem[res]=c-size[i]; 

res++; 

} 

else 

Assigntheitemtobestbin 

bin_rem[bi] -= size[i]; 

} 



 

 

returnres; 

} 
 
 
 
 

 
Intheofflineversion,wehaveallitemsat ourdisposalsincethestartoftheexecution.The natural 

solution is to sort the array fromlargest to smallest, and then apply the algorithms 

discussed henceforth. 

NOTE:Intheonlineprogramswehavegiventhe inputsupfront forsimplicitybut itcanalso work 

interactively 

Letuslookatthevariousofflinealgorithms 

1) FirstFitDecreasing 

Wefirst sortthe arrayofitemsindecreasingsizeby weight andapply first-fitalgorithmas 

discussed above 

Algorithm 

 Readtheinputsofitems 

 Sortthearrayofitemsindecreasingorderbytheirsizes 

 ApplyFirst-Fitalgorithm 

VisualRepresentation 

Letusconsiderthesameexampleasusedaboveandbinsofsize1 

Assumingthesizesoftheitemsbe{0.5,0.7,0.5,0.2,0.4,0.2,0.5,0.1, 0.6}. 

Sortingthemweget{0.7,0.6,0.5,0.5,0.5,0.4,0.2,0.2,0.1} 

TheFirstfitDecreasingsolutionwould be- 

Wewillstartwith0.7andplaceitinthefirst bin 



 

 

Wethenselect0.6sizeditem.Wecannotplaceitinbin1.So,weplaceitinbin2 

 
Wethenselect0.5sizeditem.Wecannotplaceitinanyexisting.So,weplaceitinbin3 

Wethenselect0.5sizeditem.Wecanplace itinbin3 

 

Doingthesameforallitems,we get. 
 

 
Thusonly4binsarerequiredwhichisthesameastheoptimalsolution. 

 

 
2) BestFitDecreasing 

WefirstsortthearrayofitemsindecreasingsizebyweightandapplyBest-fitalgorithmas discussed 

above 

Algorithm 

 Readtheinputsofitems 

 Sortthearrayofitemsindecreasingorderbytheirsizes 

 ApplyNext-Fitalgorithm 

VisualRepresentation 



 

 

Letusconsiderthesameexampleasusedaboveandbinsofsize1 

Assumingthesizesoftheitemsbe{0.5,0.7,0.5,0.2,0.4,0.2,0.5,0.1, 0.6}. 

Sortingthemweget{0.7,0.6,0.5,0.5,0.5,0.4,0.2,0.2,0.1} 

TheBestfitDecreasingsolutionwouldbe- 

Wewillstartwith0.7andplaceitinthefirst bin 

Wethenselect0.6sizeditem.Wecannotplaceitinbin1.So,weplaceitinbin2 

 

Wethenselect0.5sizeditem.Wecannotplaceitinanyexisting.So,weplaceitinbin3 

Wethenselect0.5sizeditem.Wecanplace itinbin3 

 
 

Doingthesameforallitems,we get. 
 

 
Thusonly4binsarerequiredwhichisthesameastheoptimalsolution. 



 

 

ApproximationAlgorithmsfortheTravelingSalesmanProblem 

WesolvedthetravelingsalesmanproblembyexhaustivesearchinSection3.4,mentioned its 

decision version as one of the most well-known NP-complete problems in Section 11.3, and 

saw how its instances canbe solved by a branch-and-bound algorithm in Section 12.2. Here, 

we consider several approximation algorithms, a small sample of dozens of such algorithms 

suggested over the years for this famous problem. 

 

 
But first let us answer the question of whether we should hope to find a polynomial-time 

approximation algorithm with a finite performance ratio on all instances of the traveling 

salesmanproblem.Asthefollowingtheorem[Sah76]shows,the answerturnsouttobeno, unless 

P = N P . 

 

 
THEOREM1IfP!=NP,thereexistsnoc-approximationalgorithmforthetravelingsalesman 

problem, i.e., there exists no polynomial-time approximation algorithm for this problem so 

that for all instances 

 

 
 

 
Nearest-neighbouralgorithm 

Thefollowingwell-knowngreedyalgorithmisbasedonthenearest-neighborheuristic: always 

go next to the nearest unvisited city. 

Step1Chooseanarbitrarycityasthestart. 

Step 2Repeatthe followingoperationuntilallthecitieshavebeenvisited:gotothe unvisited city 

nearest the one visited last (ties can be broken arbitrarily). 

Step3Returntothestartingcity. 

EXAMPLE1 Fortheinstancerepresentedbythe graphinFigure 12.10,withaasthestarting 

vertex, the nearest-neighbor algorithm yields the tour (Hamiltonian 

circuit)sa:a− b−c −d−aoflength10. 
 

Theoptimalsolution,ascanbeeasilycheckedbyexhaustivesearch,isthe 

tours∗: a−b−d −c−aoflength8.Thus,theaccuracyratioofthisapproximationis 



 

 

 

 

 
Unfortunately,exceptforitssimplicity,notmanygoodthingscanbesaidaboutthenearest- 

neighbor algorithm. In particular, nothing can be said in general about the accuracy of 

solutions obtained by this algorithm because it can force us to traverse a very long edge on 

the last leg of the tour.Indeed, if we change the weight of edge (a, d) from6 to an arbitrary 

large number w ≥ 6 in Example 1, the algorithm will still yield the tour a − b − c − d − a of 

length 4 + w, and the optimal solution will still be a − b − d − c − a of length 8. Hence, 

 

 
whichcanbemadeaslarge aswewishby choosinganappropriatelylargevalueofw. Hence, RA= 

∞ for this algorithm (as it should be according to Theorem 1). 

 

 
Twice-around-the-treealgorithm 

Step1Constructaminimumspanningtreeofthegraphcorrespondingtoagiveninstanceof the 

traveling salesman problem. 

Step 2Startingatanarbitraryvertex,performawalkaroundtheminimumspanning tree 

recording all the vertices passed by. (This can be done by a DFS traversal.) 

Step3ScanthevertexlistobtainedinStep2andeliminatefromit allrepeatedoccurrences of the 

same vertex except the starting one at the end of the list. (This step is equivalent to making 

shortcuts in the walk.) The vertices remaining on the list will form a Hamiltonian circuit, 

which is the output of the algorithm. 

EXAMPLE 2 Let us apply this algorithm to the graph in Figure 12.11a. The minimum 

spanningtreeofthisgraphismadeupofedges(a,b),(b,c),(b, d),and(d, e).Atwice- 
 
 



 

 

around-the-treewalkthatstartsandendsatais 

a,b,c,b,d,e,d,b,a. 

Eliminatingthesecondb(ashortcutfromctod),the secondd,andthethirdb(ashortcut from e to 

a) yields the Hamiltonian circuit 

a,b,c,d,e,a 

oflength39. 

ThetourobtainedinExample2isnotoptimal.Althoughthatinstanceissmallenoughtofind an 

optimal solution by either exhaustive search or branch-and-bound, we refrained from doing 

so to reiterate a general point. As a rule, we do not know what the length of an 

optimaltouractually is,and thereforewecannotcomputetheaccuracyratio f (sa)/f(s∗). For the 

twice-around-the-tree algorithm, we can at least estimate it above, provided the graphis 

Euclidean. 

 

 
Fermat'sLittleTheorem: 

Ifnisaprimenumber,thenforeverya,1<a<n-1, 

an-1≡1(modn)OR 

an-1%n=1 

Example:Since 5isprime,24≡1(mod5)[or24%5=1], 

34≡1(mod5)and44≡1(mod5) 

Since7isprime,26≡ 1(mod7), 

36≡1(mod7),46≡1(mod7) 

56≡1(mod7)and66≡1(mod7) 

Algorithm 

1) Repeatfollowingktimes: 

a) Pickarandomlyinthe range[2,n-2] 

b) Ifgcd(a,n)≠1,thenreturn false 

c) Ifan-1&nequiv;1(modn),thenreturnfalse 

2) Returntrue[probablyprime]. 

Unlikemergesort,we don’tneedtomerge thetwosortedarrays.ThusQuicksortrequires lesser 

auxiliary space than Merge Sort, which is why it is often preferred to Merge Sort. 

UsingarandomlygeneratedpivotwecanfurtherimprovethetimecomplexityofQuickSort. 

Algorithmforrandompivoting 

partition(arr[],lo,hi) 

https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
https://www.geeksforgeeks.org/merge-sort/


 

 

pivot=arr[hi] 

i = lo //placeforswapping 

for j := lo to hi – 1 do 

if arr[j] <= pivot then 

swaparr[i]witharr[j] i 

= i + 1 

swaparr[i]witharr[hi] return 

i 

partition_r(arr[],lo,hi) 

r=RandomNumberfromlotohi Swap 

arr[r] and arr[hi] 

returnpartition(arr,lo,hi) 

quicksort(arr[], lo, hi) 

iflo<hi 

p=partition_r(arr,lo,hi) 

quicksort(arr, lo , p-1) 

quicksort(arr, p+1, hi) 

 

Findingkthsmallestelement 

ProblemDescription:GivenanarrayA[]ofnelementsandapositiveintegerK,findtheKth smallest 

element in the array. It is given that all array elements are distinct. 

ForExample: 

Input :A[]={10,3,6,9,2,4,15,23},K=4 

Output:6 

Input:A[]={5,-8,10,37,101,2,9},K=6 

Output:37 

Quick-Select:Approachsimilartoquicksort 

Thisapproachissimilartothe quicksortalgorithmwhereweusethepartitionontheinput array 

recursively. But unlike quicksort, which processes both sides of the array recursively, this 

algorithm works on only one side of the partition. We recur for either the left or right side 

according to the position of pivot. 

SolutionSteps 

1. PartitionthearrayA[left..right]intotwosubarraysA[left..pos]andA[pos+1..right]such that each 

element of A[left .. pos] is less than each element of A[pos + 1 .. right]. 

2. ComputesthenumberofelementsinthesubarrayA[left..pos]i.e.count=pos-left+1 

3. if(count==K),thenA[pos]istheKthsmallestelement. 

4. OtherwisedeterminesinwhichofthetwosubarraysA[left..pos-1]andA[pos+1 ..right] the Kth 

smallest element lies. 

 If(count>K)thenthedesiredelementliesontheleftsideofthe partition 



 

 

 If (count < K), then the desired element lies on the right side of the partition. Since we 

alreadyknowivaluesthataresmallerthanthekthsmallestelementofA[left..right],the desired 

element is the (K - count)th smallest element of A[pos + 1 .. right]. 

 Basecaseisthescenarioofsingleelementarrayi.eleft==right.returnA[left]orA[right]. 

Pseudo-Code 

//Originalvalueforleft=0andright=n-1 

intkthSmallest(intA[],intleft,intright,intK) 

{ 

if(left== right) 

returnA[left] 

intpos=partition(A,left,right) 

count = pos - left + 1 

if(count==K) 

returnA[pos] 

elseif(count>K) 

returnkthSmallest(A,left,pos-1,K) 

else 

returnkthSmallest(A,pos+1,right,K-i) 

} 

 
intpartition(intA[],intl,intr) 

{ 

intx=A[r] 

inti=l-1 

for (j=ltor-1) 

{ 

if(A[j]<= x) 

{ 

i = i + 1 

swap(A[i],A[j]) 

} 

} 

swap(A[i+1],A[r]) 

returni+1 

} 

ComplexityAnalysis 

TimeComplexity:Theworst-case timecomplexityforthisalgorithmisO(n²),but itcanbe 

improved if we choose the pivot element randomly. If we randomly select the pivot, the 

expected time complexity would be linear, O(n). 
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