

CS3401-ALGORITHMS

UNIT 1

TimeandSpaceComplexity

Time complexity is a measure of how long an algorithm takes to run as a function of the size of the

input. It is typically expressed using big O notation, which describes the upper bound on the growth

of the time required by the algorithm. For example, an algorithm with a time complexity of O(n)

takes longer to run as the input size (n) increases.

Therearedifferenttypesoftimecomplexities:

 O(1) or constant time: the algorithm takes the same amount of time to run regardless of the

size of the input.

 O(log n) or logarithmic time: the algorithm's running time increases logarithmically with the

size of the input.

 O(n)orlineartime:thealgorithm'srunningtimeincreaseslinearlywiththesizeoftheinput.

 O(n log n) or linear logarithmictime: the algorithm's running time increases linearly with the

size of the input and logarithmically with the size of the input.

 O(n^2) or quadratic time: the algorithm's running time increases quadratically with the size

of the input.

 O(2^n) or exponential time: the algorithm's running time increases exponentially with the

size of the input.

Space complexity, on the other hand, is a measure of how much memory an algorithm uses as a

function of the size of the input. Like time complexity, it is typically expressed using big O notation.

For example, an algorithm with a space complexity of O(n) uses more memory as the input size (n)

increases. Space complexities are generally categorized as:

 O(1) or constant space: the algorithm uses the same amount of memory regardless of the

size of the input.

 O(n) or linear space: the algorithm's memory usage increases linearly with the size of the

input.

 O(n^2) or quadratic space: the algorithm's memory usage increases quadratically with the

size of the input.

 O(2^n)orexponentialspace:thealgorithm'smemoryusageincreasesexponentiallywith the

 Big O notation (O(f(n))) provides an upper bound on the growth of a function. It describesthe

worst-case scenario for the time or space complexity of an algorithm. For example, an

algorithm with a time complexity of O(n^2) means that the running time of the algorithm is

at most n^2, where n is the size of the input.

 Big Ω notation (Ω(f(n))) provides a lower bound on the growth of a function. It describes the

best-case scenario for the time or space complexity of an algorithm. For example, an

algorithm with a space complexity of Ω(n) means that the memory usage of the algorithm is

at least n, where n is the size of the input.

 Big Θ notation (Θ(f(n))) provides a tight bound on the growth of a function. It describes the

average-case scenario for the time or space complexity of an algorithm. For example, an

algorithm with a time complexity of Θ(n log n) means that the running time of the algorithm

is both O(n log n) and Ω(n log n), where n is the size of the input.

It's important to note that the asymptotic notation only describes the behavior of the function for

large values of n, and does not provide information about the exact behavior of the function for

small values of n. Also, for some cases, the best, worst and average cases can be the same, in that

case the notation will be simplified to O(f(n)) = Ω(f(n)) = Θ(f(n))

Additionally, these notations can be used to compare the efficiency of different algorithms, where a

lower order of the function is considered more efficient. For example, an algorithm with a time

complexity of O(n) is more efficient than an algorithm with a time complexity of O(n^2).

It's also worth mentioning that asymptotic notation is not only limited to time and space complexity

but can be used to express the behavior of any function, not just algorithms.

Thereare three asymptoticnotations that areused torepresent the time complexityof analgorithm.

They are:

 Input:Hereourinputisanintegerarrayofsize"n"andwehaveoneinteger"k"thatwe need to

search for in that array.

 Output:Iftheelement"k"isfoundinthearray,thenwehavereturn1,otherwisewehave

//for-looptoiteratewitheachelementinthe array

for (inti = 0;i <n;++i)

{

//checkifithelement isequalto"k"ornot

if(arr[i]==k)

return1;//return1,ifyoufind"k"

}

return0;//return0,ifyoudidn'tfind"k"

}

 If the input array is [1, 2, 3, 4, 5] and you want to find if "1" is present in the array or not,

thenthe if-condition ofthe code willbe executed 1 time andit willfind that the element 1 is

there in the array. So, the if-condition will take 1 second here.

 If the input array is [1, 2, 3, 4, 5] and you want to find if "3" is present in the array or not,

then the if-condition of the code will be executed 3 times and it will find that the element 3is

there in the array. So, the if-condition will take 3 seconds here.

 If the input array is [1, 2, 3, 4, 5] and you want to find if "6" is present in the array or not,

then the if-condition of the code will be executed 5 times and it will find that the element 6is

not there in the array and the algorithm will return 0 in this case. So, the if-condition will

take 5 seconds here.

As we can see that for the same input array, we have different time for different values of "k".

So,this can be divided into three cases:

 Best case: This is the lower bound on running time of an algorithm. We must know the case

that causes the minimum number of operations to be executed. In the above example, our

array was [1, 2, 3, 4, 5] and we are finding if "1" is present in the array or not. So here, after

only one comparison, we will get that ddelement is present in the array. So, this is the best

case of our algorithm.

 Average case: We calculate the running time for all possible inputs, sum all the calculated

values and divide the sum by the total number of inputs. We must know (or predict)

distribution of cases.

 Worst case: This is the upper bound on running time of an algorithm. We must know the

case that causes the maximum number of operations to be executed. In our example, the

worst case can be if the given array is [1, 2, 3, 4, 5] and we try to find if element "6" is

present in the array or not. Here, the if-condition of our loop will be executed 5 times and

then the algorithm will give "0" as output.

So, we learned about the best, average, and worst case of an algorithm. Now, let's get back to the

asymptotic notation where we saw that we use three asymptotic notation to represent the

complexity of an algorithm i.e. Θ Notation (theta), Ω Notation, Big O Notation.

NOTE:Intheasymptoticanalysis,wegenerallydealwithlargeinput size.

ΘNotation(theta)

The Θ Notation is used to find the average bound of an algorithm i.e. it defines an upper bound anda

lower bound, and your algorithm will lie in between these levels. So, if a function is g(n), then the

theta representation is shown as Θ(g(n)) and the relation is shown as:

Θ(g(n))={f(n):thereexistpositiveconstantsc1,c2andn0

ΩNotation

The Ω notation denotes the lower bound of an algorithm i.e. the time taken by the algorithm can'tbe

lower thanthis.Inotherwords, thisisthefastesttimeinwhichthealgorithmwillreturn aresult.

Its the time taken by the algorithm when provided with its best-case input. So, if a function is g(n),

then the omega representation is shown as Ω(g(n)) and the relation is shown as:

Ω(g(n))={f(n):thereexistpositiveconstantscandn0 such

that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0 }

Theaboveexpressioncan bereadas omegaofg(n)isdefinedassetofallthe functionsf(n)forwhich there

exist some constants c and n0 such that c*g(n) is less than or equal to f(n), for all n greaterthan or

equal to n0.

iff(n)=2n²+3n+1 and

g(n) = n²

thenfor c=2 andn0=1,wecansaythatf(n)=Ω(n²)

BigONotation

The Big Onotation definesthe upper bound ofany algorithm i.e.you algorithm can't take more time

than this time. In other words, we can say that the big O notation denotes the maximum time taken

by an algorithm or the worst-case time complexity of an algorithm. So, big O notation is the most

used notation for the time complexity of an algorithm. So, if a function is g(n), then the big O

representation of g(n) is shown as O(g(n)) and the relation is shown as:

O(g(n))={f(n):thereexistpositiveconstantscandn0 such

that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0 }

Theabove expression can be read as Big O of g(n) is defined as a set offunctions f(n) for which there

exist some constants c and n0 such that f(n) is greater than or equal to 0 and f(n) is smaller than or

equal to c*g(n) for all n greater than or equal to n0.

iff(n)=2n²+3n+1 and

g(n) = n²

thenfor c=6 andn0=1,wecansaythatf(n)=O(n²)

BigOnotationexampleofAlgorithms

Big O notation is the most used notation to express the time complexity of an algorithm. In this

section of the blog, we will find the big O notation of various algorithms.

Example1:Findingthesumofthefirstn numbers.

In this example, we have to find the sum of first n numbers. For example, if n = 4, then our output

should be 1 + 2 + 3 + 4 = 10. If n = 5, then the ouput should be 1 + 2 + 3 + 4 + 5 = 15. Let's try various

solutions to this code and try to compare all those codes.

O(1)solution

//functiontakinginput"n"

intfindSum(intn)

{

returnn*(n+1)/2;//thiswilltakesomeconstanttimec1

}

In the above code, there is only one statement and we know that a statement takes constant time

for its execution. The basic idea is that if the statement is taking constant time, then it will take the

same amount of time for all the input size and we denote this as O(1) .

O(n)solution

In this solution, we will run a loop from 1 to n and we will add these values to a variable named

"sum".

//functiontakinginput"n"

intfindSum(intn)

{

intsum=0;// ------------------- >ittakessomeconstanttime"c1"

for(inti= 1;i <=n; ++i)//--> herethecomparisionand increment willtakeplace ntimes(c2*n)and the

creation of i takes place with some constant time

sum=sum+i;// -------------- >thisstatementwillbeexecutedntimesi.e. c3*n

returnsum;// ------------------ >ittakessomeconstanttime"c4"

}

/*

* Totaltimetaken=timetakenbyallthestatmentstoexecute

* here in our example we have 3 constant time taking statements i.e. "sum = 0", "i = 0", and "return

sum", so we can add all the constatnts and replacce with some new constant "c"

* apart fromthis, we havetwo statementsrunning n-timesi.e. "i< n(in realn+1)"and "sum= sum+ i" i.e.

c2*n + c3*n = c0*n

* Totaltimetaken=c0*n+c

*/

The big O notation of the above code is O(c0*n) + O(c), where c and c0 are constants. So,the overall

time complexity can be written as O(n) .

O(n²)solution

In this solution, we will increment the value of sum variable "i" times i.e. for i = 1, the sum variable

will be incremented once i.e. sum = 1. For i = 2, the sum variable will be incremented twice. So, let's

see the solution.

//functiontakinginput"n"

intfindSum(intn)

{

intsum=0;// ---------------------- >constanttime

for(inti= 1;i<=n;++i)

for(intj=1;j<=i;++j)

sum++;// ------------------ >itwillrun[n*(n+1)/2]

returnsum;// --------------------- >constant time

}

/*

* Totaltimetaken=timetakenbyallthestatmentstoexecute

* thestatement thatisbeingexecutedmostofthetime is"sum++"i.e.n*(n+1)/2

* So, total complexity will be: c1*n² + c2*n + c3 [c1 is for the constant terms of n², c2 is for the

constant terms of n, and c3 is for rest of the constant time]

*/

The big O notation of the above algorithm is O(c1*n²) +O(c2*n) + O(c3). Since we take the higher

order of growth in big O. So, our expression will be reduced to O(n²) .

So,until now,we saw 3 solutions for the same problem. Now, whichalgorithm will you prefer to use

whenyouarefindingthesumoffirst "n"numbers?If youranswerisO(1)solution,thenwehaveone bonus

section for you at the end of this blog. We would prefer the O(1) solution because the time taken by

the algorithm will be constant irrespective of the input size.

RecurrenceRelation

A recurrence relation is a mathematical equation that describes the relation between the input size

and the running time ofa recursive algorithm.It expressesthe running time of aproblem intermsof

the running time of smaller instances of the same problem.

ArecurrencerelationtypicallyhastheformT(n)=aT(n/b)+f(n)where:

 T(n)istherunningtimeofthealgorithmonaninputofsizen

 aisthenumberofrecursivecallsmadebythealgorithm

 bisthesizeoftheinputpassedtoeachrecursivecall

 f(n)isthetimerequiredtoperformanynon-recursiveoperations

The recurrence relation can be used to determine the time complexity of the algorithm using

techniques such as the Master Theorem or Substitution Method.

For example, let's consider the problem of computing the nth Fibonacci number. A simple recursive

algorithm for solving this problem is as follows:

Fibonacci(n)

if n <= 1

return nelse

returnFibonacci(n-1)+Fibonacci(n-2)

The recurrencerelationforthisalgorithmisT(n)=T(n-1)+T(n-2)+ O(1),whichdescribesthe running time of

the algorithm in terms of the running time of the two smaller instances of the problem with input

sizes n-1 and n-2. Using the Master Theorem, it can be shown that the time complexity of this

algorithm is O(2^n) which is very inefficient for large input sizes.

Searching

Searching is the process of fetching a specific element in a collection of elements. The collection can

be an array or a linked list. If you find the element in the list, the process is considered successful,

and it returns the location of that element.

Two prominent search strategies are extensively used to find a specific item on a list. However, the

algorithm chosen is determined by the list's organization.

https://www.simplilearn.com/tutorials/data-structure-tutorial/linked-list-in-data-structure

1. LinearSearch

2. BinarySearch

3. Interpolationsearch

LinearSearch

Linear search, often known as sequential search, is the most basic search technique. In this type of

search,wegothroughtheentirelistandtrytofetchamatchforasingleelement.Ifwe find a match, then the

address of the matching target element is returned.

On the other hand, if the element is not found, then it returns a NULL value.

Followingisastep-by-stepapproachemployedtoperformLinearSearchAlgorithm.

Theproceduresforimplementinglinearsearchareasfollows:

Step1:First,readthesearchelement(Targetelement)inthearray.

Step2:Inthesecondstepcomparethesearchelementwiththefirstelementinthearray.

Step3:Ifbotharematched,display"Targetelementisfound"andterminatetheLinearSearch function.

Step 4: If both are not matched, compare the search element with the next element in the array.

Step 5: In this step, repeat steps 3 and 4 until the search (Target) element is compared with the last

element of the array.

Step 6 - If the last element in the list does not match, the Linear Search Function will be terminated,

and the message "Element is not found" will be displayed.

AlgorithmandPseudocodeofLinearSearchAlgorithm Algorithm

of the Linear Search Algorithm

PseudocodeofLinearSearchAlgorithm

Start

linear_search(Array,value)

LinearSearch(ArrayArr,Value a)//Arristhenameofthe array,andaisthesearchedelement. Step 1: Set i

to 0 // i is the index of an array which starts from 0

Step2:ifi>nthengotostep7//nisthe numberofelementsinarray Step 3: if

Arr[i] = a then go to step 6

Step4:Setitoi+1

Step5:Gotostep2

Step6:Printelementafoundatindexiandgotostep8 Step 7:

Print element not found

Step8:Exit

https://www.simplilearn.com/binary-search-algorithm-article

ExampleofLinearSearchAlgorithm

Consider anarrayofsize7withelements13,9,21,15,39,19,and27thatstartswith0andends with size minus

one, 6.

Searchelement=39

Step1:Thesearchedelement39iscomparedtothefirstelementofanarray,whichis13.

Thematchisnotfound,younowmoveontothenextelementandtrytoimplement acomparison. Step 2:

Now, search element 39 is compared to the second element of an array, 9.

Step3:Now,searchelement39iscomparedwiththethirdelement,whichis21.

Again,boththeelementsarenotmatching,youmoveontothenextfollowingelement. Step 4;

Next, search element 39 is compared with the fourth element, which is 15.

Foreachelementinthearray

If(searchedelement==value)

Return'sthesearchedelementlocation end

if

endfor

end

Step5:Next,searchelement39iscomparedwiththefifthelement39.

Aperfectmatchisfound,displaytheelementfoundatlocation4.

TheComplexityofLinearSearchAlgorithm

Three different complexities faced while performing Linear Search Algorithm, they are mentioned as

follows.

1. BestCase

2. WorstCase

3. AverageCase

BestCase Complexity

 Theelementbeingsearchedcouldbefoundinthefirstposition.

 Inthiscase,thesearchendswithasinglesuccessful comparison.

 Thus,inthebest-casescenario,thelinearsearchalgorithmperformsO(1)operations.

WorstCaseComplexity

 Theelementbeingsearchedmaybeatthelastpositioninthearrayornotat all.

 Inthefirstcase,thesearchsucceedsin‘n’comparisons.

 Inthenextcase,thesearchfailsafter‘n’ comparisons.

 Thus,intheworst-casescenario,thelinearsearchalgorithmperformsO(n)operations.

AverageCaseComplexity

Whentheelementto be searchedisinthe middleofthe array,the averagecase ofthe LinearSearch

Algorithm is O(n).

SpaceComplexityofLinearSearchAlgorithm

Thelinearsearchalgorithmtakesupnoextraspace;itsspacecomplexityisO(n)foranarrayofn elements.

ApplicationofLinearSearchAlgorithm

Thelinearsearchalgorithmhasthefollowingapplications:

 Linearsearchcanbeappliedtobothsingle-dimensionalandmulti-dimensionalarrays.

 Linearsearchiseasytoimplementandeffectivewhenthearraycontainsonlyafewelements.

 LinearSearchisalsoefficientwhenthesearchisperformedtofetchasinglesearchinan unordered-

List.

CodeImplementationofLinearSearchAlgorithm

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

int main()

{

intarray[50],i,target,num;

https://www.simplilearn.com/tutorials/data-structure-tutorial/time-and-space-complexity

BinarySearch

Binary search is the search technique that works efficiently on sorted lists. Hence, to search an

element into some list using the binary search technique, we must ensure that the list is sorted.

Binary search follows the divide and conquer approach in which the list is divided into two halves,

and the item is compared with the middle element of the list. If the match is found then,

thelocationofthe middle elementisreturned.Otherwise,wesearchintoeitherofthehalvesdepending

upon the result produced through the match

NOTE: Binary search can be implemented on sorted array elements. If the list elements are not

arranged in a sorted manner, we have first to sort them.

Algorithm

1. Binary_Search(a,lower_bound, upper_bound, val) //'a' is the given array,'lower_bound' is t

he index ofthe first array element, 'upper_bound'is the indexof the last array element, 'val' is

the value to search

2. Step1:setbeg=lower_bound,end=upper_bound,pos=-1

3. Step2:repeatsteps3 and4 whilebeg<=end

4. Step3:setmid=(beg+ end)/2

5. Step4:ifa[mid]=val

6. setpos =mid

7. printpos

8. gotostep6

9. elseifa[mid]>val

10. setend= mid-1

11. else

12. setbeg= mid+1

13. [endofif]

14. [endof loop]

15. Step5:if pos=-1

printf("Howmanyelementsdoyouwantinthearray"); scanf("%d",&num);

printf("Enterarrayelements:");

for(i=0;i<num;++i)

scanf("%d",&array[i]);

printf("Enterelementtosearch:");

scanf("%d",&target);

for(i=0;i<num;++i)

if(array[i]==target)

break;

if(i<num)

printf("Targetelementfoundatlocation%d",i); else

printf("Targetelementnotfoundinanarray"); return

0;

}

16. print"valueisnotpresentinthearray"

17. [endofif]

18. Step6:exit

Procedurebinary_search

A←sortedarray

n←sizeof array

x←valuetobesearched Set

lowerBound = 1

SetupperBound=n

while x not found

ifupperBound<lowerBound EXIT:

x does not exists.

setmidPoint=lowerBound+(upperBound-lowerBound)/2 if

A[midPoint] < x

setlowerBound=midPoint+1 if

A[midPoint] > x

setupperBound=midPoint-1 if

A[midPoint] = x

EXIT:xfoundatlocationmidPoint end

while

end procedure

WorkingofBinarysearch

To understand the working of the Binary search algorithm, let's take a sorted array. It will be easy to

understand the working of Binary search with an example.

Therearetwomethodstoimplementthebinarysearchalgorithm-

o Iterativemethod

o Recursivemethod

Therecursivemethodofbinarysearchfollowsthedivideandconquerapproach. Let the

elements of array are -

Lettheelementtosearchis,K= 56

Wehavetousethebelowformulatocalculatethemidofthearray-

1. mid=(beg+end)/2

So, in the given array -

beg= 0

end=8

mid=(0+ 8)/2= 4.So,4is themidofthe array.

Now,the elementtosearchisfound.Soalgorithmwillreturntheindexoftheelementmatched. Binary

Search complexity

Now, let's see the time complexity of Binary search in the best case, average case, and worst

case.We will also see the space complexity of Binary search.

1. TimeComplexity

Case TimeComplexity

BestCase O(1)

AverageCase O(logn)

WorstCase O(logn)

o Best Case Complexity - In Binary search, best case occurs when the element to search is

found in first comparison, i.e., when the first middle element itself is the element to be

searched. The best-case time complexity of Binary search is O(1).

o AverageCaseComplexity-TheaveragecasetimecomplexityofBinarysearchisO(logn).

o Worst Case Complexity - In Binary search, the worst case occurs, when we have to keep

reducing the search space till it has only one element. The worst-case time complexity of

Binary search is O(logn).

2. Space Complexity

o ThespacecomplexityofbinarysearchisO(1).

ImplementationofBinarySearch

Program:WriteaprogramtoimplementBinarysearchinClanguage.

1. #include<stdio.h>

2. intbinarySearch(inta[],intbeg,intend,intval)

3. {

4. intmid;

5. if(end>=beg)

O(1) SpaceComplexity

6. { mid=(beg+end)/2;

7. /*ifthe itemtobe searchedispresentatmiddle*/

8. if(a[mid]== val)

9. {

10. returnmid+1;

11. }

12. /* if the item to be searched is smaller than middle, thenit can onlybe in left subarra y

*/

13. elseif(a[mid]<val)

14. {

15. returnbinarySearch(a,mid+1,end,val);

16. }

17. /*if the itemto be searchedis greater than middle,thenit can onlybe in right subarr ay

*/

18. else

19. {

20. returnbinarySearch(a,beg,mid-1,val);

21. }

22. }

23. return-1;

24.}

25. intmain(){

26. inta[]={11,14,25,30,40,41,52,57,70};//givenarray

27. intval= 40;//valuetobesearched

28. intn=sizeof(a)/sizeof(a[0]);//sizeofarray

29. intres=binarySearch(a,0,n-1,val);//Storeresult

30. printf("Theelementsofthearrayare-");

31. for(inti =0;i<n;i++)

32. printf("%d",a[i]);

33. printf("\nElementtobesearchedis-%d",val);

34. if(res==-1)

35. printf("\nElementisnotpresentinthearray");

36. else

37. printf("\nElementispresentat%dpositionofarray",res);

38. return0;

39.}

Output

InterpolationSearch

Interpolation search is an improved variant of binary search. This search algorithm works on the

probing position of the required value. For this algorithm to work properly, the data collectionshould

be in a sorted form and equally distributed.

Binary search has a huge advantage of time complexity over linear search. Linear search has worst-

case complexity of Ο(n) whereas binary search has Ο(log n).

There are cases where the location of target data may be known in advance. For example, in case of

a telephone directory, if we want to search the telephone number of Morphius. Here, linear search

and even binary search will seem slow as we can directly jump to memory space where the names

start from 'M' are stored.

PositionProbinginInterpolationSearch

Interpolation search finds a particular item by computing the probe position. Initially, the probe

position is the position of the middle most item of the collection.

If a match occurs, then the index of the item is returned. To split the list into two parts, we use the

following method −

mid=Lo+((Hi-Lo)/(A[Hi]-A[Lo]))* (X-A[Lo])

where

−A=list

Lo=Lowestindexofthelist Hi=

Highestindexofthe list

A[n]=Valuestoredatindexninthelist

If the middle item is greater than the item, then the probe position is again calculated in the sub-

array to the right of the middle item. Otherwise, the item is searched in the subarray to the left of

the middle item. Thisprocess continueson the sub-array as welluntil the size ofsubarray reducesto

zero.

Runtime complexity of interpolation search algorithm is Ο(log (log n)) as compared to Ο(log n) ofBST

in favorable situations.

Algorithm

AsitisanimprovisationoftheexistingBSTalgorithm,wearementioningthestepstosearchthe 'target' data

value index, using position probing −

Step1−Startsearchingdatafrommiddleofthelist.

Step2−Ifitisamatch,returntheindexoftheitem,andexit. Step 3 −

If it is not a match, probe position.

Step4−Dividethelistusingprobingformulaandfind thenewmidle. Step 5 −

If data is greater than middle, search in higher sub-list.

Step6−Ifdataissmallerthanmiddle,searchinlowersub-list. Step 7

− Repeat until match.

PseudocodeA
→Arraylist
N→Size ofA
X→TargetValue

ProcedureInterpolation_Search()

Set Lo→0

Set Mid → -1
SetHi→N-1

WhileXdoesnotmatch

ifLoequalstoHiORA[Lo]equalsto A[Hi]
EXIT:Failure,Targetnotfound

end if

SetMid=Lo+ ((Hi-Lo)/ (A[Hi]-A[Lo]))*(X- A[Lo])

ifA[Mid]=X
EXIT:Success,TargetfoundatMid else
ifA[Mid]<X

SetLotoMid+1
else if A[Mid] > X

Set Hi to Mid-1
endif

end if
End While

EndProcedure

ImplementationofinterpolationinC

#include<stdio.h>#defi

ne MAX 10

//arrayofitemsonwhichlinearsearchwillbeconducted. int

list[MAX] = { 10, 14, 19, 26, 27, 31, 33, 35, 42, 44 };

intfind(intdata){ int

lo = 0;

inthi=MAX-1; int

mid = -1;

intcomparisons=1;

int index = -1;

while(lo <= hi) {

printf("\nComparison%d\n",comparisons);

printf("lo:%d,list[%d]=%d\n",lo,lo,list[lo]);

printf("hi:%d,list[%d]=%d\n",hi,hi, list[hi]);

comparisons++;

//probethemidpoint

mid=lo+(((double)(hi-lo)/(list[hi]-list[lo]))*(data-list[lo]));

printf("mid = %d\n",mid);

// data found

if(list[mid]==data){

index=mid;

break;

}else{

if(list[mid]<data){

//ifdataislarger,dataisinupperhalf lo =

mid + 1;

}else{

//ifdataissmaller,dataisinlowerhalf hi =

mid - 1;

}

}

}

printf("\nTotalcomparisonsmade:%d",--comparisons); return

index;

}

intmain(){

//find location of 33

intlocation=find(33);

//ifelementwasfound

if(location != -1)

printf("\nElementfoundatlocation:%d",(location+1)); else

printf("Elementnotfound.");

return 0;

}

Ifwecompileandruntheabove program,itwillproducethefollowingresult− Output

Comparison1

lo:0,list[0]= 10

hi:9,list[9]=44

mid=6

Total comparisons made: 1

Elementfoundatlocation:7

TimeComplexity

 Bestcase-O(1)

The best-case occurs when the target is found exactly as the first expected position

computed using the formula. As we only perform one comparison, the time complexity is

O(1).

 Worst-case-O(n)

Theworstcaseoccurswhenthegivendatasetisexponentiallydistributed.

 Averagecase-O(log(log(n)))

If the data set is sorted and uniformly distributed, then it takes O(log(log(n))) time as on an

average (log(log(n))) comparisons are made.

SpaceComplexity

O(1)asnoextraspaceisrequired.

PatternSearch
Pattern Searching algorithms are used to find a pattern or substring from another bigger string.There

are different algorithms. The main goal to design these type of algorithms to reduce the time

complexity. The traditional approach may take lots of time to complete the pattern searching taskfor

a longer text.

Herewewillseedifferentalgorithmstoget abetterperformanceofpatternmatching. In this

Section We are going to cover.

 Aho-CorasickAlgorithm

 AnagramPatternSearch

 BadCharacterHeuristic

 BoyerMooreAlgorithm

 EfficientConstructionofFiniteAutomata

 kasai’sAlgorithm

 Knuth-Morris-PrattAlgorithm

 Manacher’sAlgorithm

 NaivePatternSearching

 Rabin-KarpAlgorithm

 SuffixArray

 TrieofallSuffixes

 ZAlgorithm

Naïve pattern searching is the simplest method among other pattern searching algorithms. It checks

for all character of the main string to the pattern. This algorithm is helpful for smaller texts. It does

not need any pre-processing phases. We can find substring by checking once for the string. It also

does not occupy extra space to perform the operation.

The time complexity of Naïve Pattern Search method is O(m*n). The m is the size of pattern and n is

the size of the main string.

InputandOutput

Input:

MainString:“ABAAABCDBBABCDDEBCABC”,pattern:“ABC”

Output:

Pattern found at position: 4

Patternfoundatposition:10

Patternfoundatposition:18

Algorithm
naive_algorithm(pattern,text)

Input−Thetextandthepattern

Output−locations,wherethepatternispresentinthetext

Stpaart _len:=patternSize

str_len:=string size

fori:=0to(str_len-pat_len),do for j

:= 0 to pat_len, do

iftext[i+j]≠pattern[j],then

break

ifj==patLen,then

displaythepositioni,astherepatternfound

End

ImplementationinC
#include <stdio.h>

#include<string.h>

int main (){

chartxt[]="tutorialsPointisthebestplatformforprogrammers"; char

pat[] = "a";

intM=strlen(pat); int

N = strlen (txt);

for(inti=0;i<=N-M;i++){ int j;

for (j = 0; j < M;

j++)if(txt[i+j]!=pat[j

])

break;

if(j==M)

printf ("Pattern matches at index %d

",i);

}

return0;

}

Output

Pattern matches at 6

Patternmatchesat25

Patternmatchesat 39

Rabin-Karpmatchingpattern

Rabin-Karp is another pattern searching algorithm. It is the string matching algorithm that was

proposed by Rabin and Karp to find the pattern in a more efficient way. Like the Naive Algorithm, it

alsochecksthe pattern bymoving the window oneby one,but withoutchecking allcharactersforall

cases, it finds the hash value. When the hash value is matched, then only it proceeds to check each

character. In this way, there is only one comparison per text subsequence making it a more efficient

algorithm for pattern searching.

Preprocessingtime-O(m)

ThetimecomplexityoftheRabin-KarpAlgorithmisO(m+n),butfortheworstcase,itisO(mn).

Algorithm

rabinkarp_algo(text,pattern,prime)

Input−Themaintextandthepattern.Anotherprimenumberoffindhash location

Output−locations,wherethepatternisfound

Start

pat_len:=patternLength

str_len := string Length

patHash:=0 andstrHash:=0,h:=1

maxChar:=totalnumberofcharactersincharacterset for

index i of all character in the pattern, do

h:=(h*maxChar)modprime

forallcharacterindexiofpattern,do

patHash:=(maxChar*patHash+pattern[i])modprime strHash

:= (maxChar*strHash + text[i]) mod prime

fori:=0to(str_len-pat_len),do if

patHash = strHash, then

forcharIndex:=0 topat_len-1,do

iftext[i+charIndex]≠pattern[charIndex],then

break

ifcharIndex=pat_len, then

printthelocationiaspatternfoundatiposition. if i <

(str_len - pat_len), then

strHash:=(maxChar*(strHash–text[i]*h)+text[i+patLen])modprime,then if

strHash < 0, then

strHash:=strHash+prime

End

ImplementationInC

#include<stdio.h>

#include<string.h>

int main (){

chartxt[80],pat[80];

int q;

printf("Enterthecontainerstring");
scanf ("%s", &txt);
printf("Enterthepatterntobesearched");
scanf ("%s", &pat);
int d = 256;

printf("Enteraprimenumber");
scanf ("%d", &q);

intM=strlen(pat);

int N = strlen (txt);

int i, j;

intp=0;

int t = 0;

inth=1;

for(i=0;i<M-1;i++) h =

(h * d) % q;

for(i=0;i<M;i++){

p= (d*p+ pat[i])%q;

t=(d*t+txt[i])%q;

}

for(i=0;i<=N-M;i++){ if (p

== t){

for (j = 0; j < M; j++){

if(txt[i+j]!=pat[j])

break;

}

if (j == M)

printf("Patternfoundatindex%d",i);

}

if(i<N-M){

t=(d*(t-txt[i]*h)+txt[i+M])%q; if (t < 0)

t=(t+q);

}

}

return0;

}

Output

Enter the container string

tutorialspointisthebestprogrammingwebsite

Enter the pattern to be searched

p

Enteraprimenumber 3

Pattern found at index 8

Patternfoundatindex21

nthisproblem,wearegiventwostringsatextandapattern.Ourtaskistocreateaprogramfor KMP algorithm

for pattern search, it will find all the occurrences of pattern in text string.

Here,wehavetofindalltheoccurrencesofpatternsinthetext.

Let’stakeanexampletounderstandtheproblem,

Input

text=“xyztrwqxyzfg”pattern=“xyz” Output

Foundatindex0

Foundatindex7

Here, we will discuss the solution to the problem using KMP (Knuth Morris Pratt) pattern searching

algorithm, it will use a preprocessing string ofthe pattern whichwill be usedfor matching inthe text.

And help’s in processing or finding pattern matches in the case where matching characters are

followed by the character of the string that does not match the pattern.

We will preprocess the pattern wand to create an array that contains the proper prefix and suffix

from the pattern that will help in finding the mismatch patterns.

ProgramforKMPAlgorithmforPatternSearching

//CProgramforKMPAlgorithmforPatternSearching Example

#include<iostream>

#include<string.h>usin

gnamespacestd;

voidprefixSuffixArray(char*pat,intM,int*pps){ int

length = 0;

pps[0] = 0;int

i =

1;while(i<M){

if(pat[i]==pat[length]){

length++;

pps[i]=length;

i++;

}else{

if(length!=0)

length=pps[length-1];

else {

pps[i]=0;

i++;

}

}

}

}

voidKMPAlgorithm(char*text,char*pattern){

int M = strlen(pattern);

intN=strlen(text); int

pps[M];

prefixSuffixArray(pattern,M,pps); int

i = 0;

int j = 0;

while(i<N){

if(pattern[j]==text[i]){ j++;

i++;

}

if(j==M)

{

printf("Foundpatternatindex%d",i-j); j

= pps[j - 1];

}

elseif(i<N&&pattern[j]!=text[i]){ if (j

!= 0)

j=pps[j-1];

else

i =i+1;

}

}

}

intmain(){

chartext[]="xyztrwqxyzfg";

char pattern[] = "xyz";

printf("Thepatternisfoundinthetextatthefollowingindex:");

KMPAlgorithm(text, pattern);

return0;

}

Output

Thepatternisfoundinthetextatthefollowingindex− Found

pattern at index 0

Foundpatternatindex7

Sorting:Insertionsort

Insertionsort workssimilarto thesorting ofplayingcardsinhands. It isassumedthatthe first cardis

already sorted in the card game, and then we select an unsorted card. If the selected unsorted cardis

greater than the first card, it will be placed at the right side; otherwise, it will be placed at the left

side. Similarly, all unsorted cards are taken and put in their exact place.

The same approach is applied in insertion sort. The idea behind the insertion sort is that first take

one element,iterate it through the sortedarray.Although it issimple to use,it is not appropriatefor

large data sets as the time complexity of insertion sort in the average case and worst case is O(n2),

where n is the number of items. Insertion sort is less efficient than the other sorting algorithms like

heap sort, quick sort, merge sort, etc.

Algorithm
Thesimplestepsofachievingtheinsertionsortarelistedasfollows-

Step1-Iftheelementisthefirstelement,assumethatitisalreadysorted.Return 1.

Step2 - Pick the next element, and store it separately in a key.

Step3-Now,comparethekeywithallelementsinthesortedarray.

Step4 -Iftheelement inthesortedarrayissmallerthanthecurrent element,thenmove tothenext element.

Else, shift greater elements in the array towards the right.

Step5-Insertthevalue.

Step6-Repeatuntilthearrayissorted. Working

of Insertion sort Algorithm

Now,let'sseetheworkingoftheinsertionsortAlgorithm.

Tounderstandtheworkingoftheinsertionsortalgorithm,let'stakeanunsortedarray.Itwillbe easier to

understand the insertion sort via an example.

Lettheelementsofarrayare-

Initially,thefirsttwoelementsarecomparedininsertionsort.

Here, 31 is greater than 12. That means both elements are already in ascending order. So, for now,

12 is stored in a sorted sub-array.

Now,movetothenexttwoelementsandcompare them.

Here,25issmallerthan31.So,31isnotatcorrectposition.Now,swap31with25.Alongwith swapping,

insertion sort will also check it with all elements in the sorted array.

For now, the sorted array has only one element, i.e. 12. So, 25 is greater than 12. Hence, the sorted

array remains sorted after swapping.

Now, two elements in the sorted array are 12 and 25. Move forward to the next elements that are31

and 8.

Both31and8are notsorted.So,swap them.

Afterswapping,elements25and8areunsorted.

So,swapthem.

Now,elements12and8areunsorted.

So,swapthem too.

Now, the sorted array has three items that are 8, 12 and 25. Move to the next items that are 31 and

32.

Hence,theyarealreadysorted.Now,thesortedarrayincludes8,12,25and31.

Movetothenextelementsthatare32and17.

17issmallerthan32.So,swap them.

Swappingmakes31and17unsorted.So,swapthemtoo.

Now,swappingmakes25and17unsorted.So,performswappingagain.

Now,thearrayiscompletelysorted.

Insertion sort complexity

1. TimeComplexity

Case TimeComplexity

BestCase O(n)

AverageCase O(n2)

WorstCase O(n2)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the array is already

sorted. The best-case time complexity of insertion sort is O(n).

o Average Case Complexity - It occurs when the array elements are in jumbled order that is

not properly ascending and not properly descending. The average case time complexity of

insertion sort is O(n2).

o Worst Case Complexity - It occurs when the array elements are required to be sorted in

reverse order. That means suppose you have to sort the array elements in ascending order,

butitselementsareindescendingorder.Theworst-casetimecomplexityofinsertionsort is O(n2).

2. Space Complexity

SpaceComplexity O(1)

Stable YES

o ThespacecomplexityofinsertionsortisO(1).Itisbecause,ininsertionsort,anextra variable is

required for swapping.

Implementationofinsertionsort

Program:WriteaprogramtoimplementinsertionsortinClanguage.

1. #include<stdio.h>

2.

3. voidinsert(inta[],intn)/*functiontosortanaaywithinsertionsort*/

4. {

5. inti,j, temp;

6. for (i=1;i<n;i++){

7. temp= a[i];

8. j =i- 1;

9.

10. while(j>=0 && temp<= a[j])/* Move the elements greater than temp to one position a

head from their current position*/

11. {

12. a[j+1]= a[j];

13. j=j-1;

14. }

15. a[j+1]= temp;
16. }

17.}

18.

19. voidprintArr(inta[],intn)/*functiontoprintthearray*/

20. {

21. inti;

22. for(i=0;i <n;i++)

23. printf("%d", a[i]);

24.}

25.

26. intmain()

27. {

28. inta[]={12,31,25,8,32,17 };

29. intn=sizeof(a)/sizeof(a[0]);

30. printf("Beforesortingarrayelementsare- \n");

31. printArr(a,n);

32. insert(a,n);

33. printf("\nAftersortingarrayelementsare-\n");

34. printArr(a,n);

35.

36. return0;

37. }

Output:

HeapSort

HeapSortAlgorithm

Heap sort processes the elements by creating the min-heap or max-heap using the elements of the

given array. Min-heap or max-heap represents the ordering of array in which the root element

represents the minimum or maximum element of the array.

Heapsortbasicallyrecursivelyperformstwomainoperations-

o BuildaheapH,usingtheelementsof array.

o Repeatedlydeletetherootelementoftheheapformedin1stphase.

Aheapisacompletebinary tree,andthe binary treeisatreeinwhichthe nodecanhave theutmost two

children. A complete binary tree is a binary tree in which all the levels except the last level, i.e., leaf

node, should be completely filled, and all the nodes should be left-justified.

Heapsort is a popular and efficient sorting algorithm. The concept of heap sort is to eliminate the

elements one by one from the heap part of the list, and then insert them into the sorted part of the

list.

Algorithm

1. HeapSort(arr)

2. BuildMaxHeap(arr)

3. fori=length(arr)to2

4. swaparr[1]witharr[i]

5. heap_size[arr]=heap_size[arr]?1

6. MaxHeapify(arr,1)

7. End

BuildMaxHeap(arr)

1. BuildMaxHeap(arr)

2. heap_size(arr)=length(arr)

3. fori=length(arr)/2to1

4. MaxHeapify(arr,i)

5. End

MaxHeapify(arr,i)

1. MaxHeapify(arr,i)

2. L= left(i)

3. R=right(i)

4. ifL?heap_size[arr]andarr[L]>arr[i]

5. largest=L

6. else

7. largest=i

8. ifR?heap_size[arr]andarr[R]>arr[largest]

9. largest=R

10. iflargest!=i

11. swaparr[i]witharr[largest]

12. MaxHeapify(arr,largest)

13. End

WorkingofHeapsortAlgorithm

In heap sort, basically, there are two phases involved in the sorting of elements. By using the heap

sort algorithm, they are as follows -

o Thefirststepincludesthecreationofaheapbyadjustingtheelementsofthearray.

o After the creation of heap, now remove the root element of the heap repeatedly by shifting

it to the end of the array, and then store the heap structure with the remaining elements.

First,wehavetoconstructaheapfromthegivenarrayandconvertitintomaxheap.

Afterconvertingthegivenheapintomaxheap,thearrayelementsare-

Next, we have to delete the root element (89) from the max heap. To delete this node, we have to

swap it with the last node, i.e. (11). After deleting the root element, we again have to heapify it to

convert it into max heap.

After swapping the array element 89 with 11, and converting the heap into max-heap, the elements

of array are -

In the next step, again, we have to delete the root element (81) from the max heap. To delete this

node, wehave to swapit with thelast node, i.e. (54). After deletingthe rootelement, we again have to

heapify it to convert it into max heap.

After swapping the array element 81 with 54 and converting the heap into max-heap, the elements

of array are -

In the next step, we have to delete the root element (76) from the max heap again. To delete this

node, we have to swap it with the last node, i.e. (9). After deleting the root element, we again have

to heapify it to convert it into max heap.

Afterswapping the array element 76with 9 and converting the heap into max-heap,the elementsof

array are -

In the next step, again we have to delete the root element (54) from the max heap. To delete this

node, wehave to swapit with thelast node, i.e. (14). After deletingthe rootelement, we again have to

heapify it to convert it into max heap.

After swapping the array element 54 with 14 and converting the heap into max-heap, the elements

of array are -

In the next step, again we have to delete the root element (22) from the max heap. To delete this

node, wehave to swapit with thelast node, i.e. (11). After deletingthe rootelement, we again have to

heapify it to convert it into max heap.

After swapping the array element 22 with 11 and converting the heap into max-heap, the elements

of array are -

In the next step, again we have to delete the root element (14) from the max heap. To delete this

node, we have to swap it with the last node, i.e. (9). After deleting the root element, we again have

to heapify it to convert it into max heap.

Afterswapping the array element 14with 9 and converting the heap into max-heap,the elementsof

array are -

In the next step, again we have to delete the root element (11) from the max heap. To delete this

node, we have to swap it with the last node, i.e. (9). After deleting the root element, we again have

to heapify it to convert it into max heap.

Afterswappingthearrayelement11with9,theelementsofarrayare-

Now,heaphasonlyoneelementleft.Afterdeletingit,heapwillbeempty.

Aftercompletionofsorting,thearrayelementsare-

TimecomplexityofHeapsortinthebestcase,averagecase,andworst case

1. TimeComplexity

TimeComplexity Case

BestCase O(nlogn)

AverageCase O(nlogn)

WorstCase O(nlogn)

o Best Case Complexity - It occurs when there is no sorting required, i.e. the array is already

sorted. The best-case time complexity of heap sort is O(n logn).

o Average Case Complexity - It occurs when the array elements are in jumbled order that is

not properly ascending and not properly descending. The average case time complexity of

heap sort is O(n log n).

o Worst Case Complexity - It occurs when the array elements are required to be sorted in

reverse order. That means suppose you have to sort the array elements in ascending order,

but itselements are in descending order. Theworst-case time complexityofheap sortis O(n

log n).

The time complexity of heap sort is O(n logn) in all three cases (best case, average case, and

worstcase). The height of a complete binary tree having n elements is logn.

2. Space Complexity

SpaceComplexity O(1)

Stable N0

o ThespacecomplexityofHeapsortisO(1).

Implementation of Heapsort

Program:WriteaprogramtoimplementheapsortinC language.

1. #include<stdio.h>

2. /*functiontoheapifyasubtree.Here'i'isthe

3. indexofrootnodeinarraya[],and'n'isthesizeofheap.*/

4. voidheapify(inta[],intn,inti)

5. {

6. intlargest=i;//Initializelargestas root

7. int left= 2*i+1;//leftchild

8. int right =2* i+2;//rightchild

9. //Ifleftchildislargerthan root

10. if(left<n&&a[left]>a[largest])

11. largest=left;

12. //Ifrightchildislargerthanroot

13. if(right<n&&a[right]>a[largest])

14. largest=right;

15. //Ifrootisnot largest

16. if(largest!=i){

17. //swapa[i]witha[largest]

18. inttemp=a[i];

19. a[i]= a[largest];

20. a[largest]=temp;

21. heapify(a,n,largest);

22. }

23.}

24. /*Functiontoimplementtheheapsort*/

25. voidheapSort(inta[],intn)

26. {

27. for(inti=n/2-1;i>=0;i--)

28. heapify(a,n,i);

29. //Onebyoneextract anelementfromheap

30. for(inti=n-1;i>=0;i--) {

31. /*Movecurrentrootelementtoend*/

32. //swapa[0]witha[i]

33. inttemp=a[0];

34. a[0]= a[i];

35. a[i]=temp;

36.

37. heapify(a,i,0);

38. }

39.}

40. /*functiontoprintthearrayelements*/

41. voidprintArr(intarr[],intn)

42. {

43. for(inti=0;i<n;++i)

44. {

45. printf("%d",arr[i]);

46. printf("");

47. }

48.

49.}

50. intmain()

51. {

52. inta[]={48,10,23,43,28,26,1};

53. intn=sizeof(a)/ sizeof(a[0]);

54. printf("Beforesortingarrayelementsare- \n");

55. printArr(a,n);

56. heapSort(a,n);

57. printf("\nAftersortingarrayelementsare-\n");

58. printArr(a,n);

59. return0;

60.}

Output

UNIT2-GRAPHS:basics,representation,

traversals, and application

Basicconcepts

Definition

AgraphG(V,E) isanon-lineardatastructurethat consistsofnode andedge

pairsofobjectsconnectedby links.

Thereare2typesofgraphs:

 Directed

 Undirected

Directedgraph

A graph with only directed edgesissaid tobe adirected graph. Example

The following directed graph has5 verticesand8 edges. This graphG

canbedefinedasG=(V,E),whereV={A,B,C,D,E}andE={(A,B),

(A,C)(B,E),(B,D),(D,A),(D,E),(C,D),(D,D)}.

DirectedGraph

Undirectedgraph

Agraphwithonlyundirectededgesissaidtobeanundirectedgraph. Example

Thefollowingisanundirectedgraph.

UndirectedGraph

RepresentationofGraphs

https://www.educative.io/edpresso/directed-graphs-vs-undirected-graphs
https://www.educative.io/edpresso/directed-graphs-vs-undirected-graphs

Graph data structure is represented using the following

representations.

1. AdjacencyMatrix

2. AdjacencyList

AdjacencyMatrix

 Inthisrepresentation,the graph canbe representedusing a

matrix of size n x n, where nisthe number of vertices.

 Thismatrixisfilledwitheither1’sor0’s.

 Here,1representsthatthere isanedgefromrowvertexto

columnvertex,and0representsthatthereisnoedgefromrow

vertextocolumnvertex.

Directedgraphrepresentation

Adjacencylist

 In this representation, every vertex of the graph contains a

listofitsadjacent vertices.

 Ifthegraphisnotdense,i.e.,thenumberofedgesisless, thenit

isefficient to represent thegraphthrough the adjacency list.

AdjacencyList

Graphtraversals

 Graph traversalisa technique used to search for a vertexina

graph.It isalso used to decide the order of vertices to be

visited inthe search process.

 A graph traversal finds the edges tobe usedinthe search

process without creating loops. Thismeans that, with graph

traversal,we canvisit allthe vertices of the graph without

getting into a looping path. There are two graph traversal

techniques:

1. DFS(DepthFirstSearch)

2. BFS(Breadth-FirstSearch)

Applicationsofgraphs

https://www.educative.io/edpresso/what-is-an-adjacency-matrix
https://www.educative.io/edpresso/what-is-depth-first-search
https://www.educative.io/edpresso/what-is-breadth-first-search

1. Social network graphs:To tweet or not to tweet. Graphs that

representwhoknowswhom,whocommunicateswithwhom,who

influenceswhom,orotherrelationshipsinsocialstructures.An

exampleisthe twitter graph ofwho followswhom.

2. Graphs in epidemiology: Vertices represent individuals and

directededgestoviewthetransferofaninfectiousdisease

fromoneindividualtoanother.Analyzingsuchgraphshasbecome

animportantcomponentinunderstandingandcontrollingthe spread of

diseases.

3. Protein-protein interactions graphs: Vertices represent proteins

andedges represent interactionsbetweenthem that carry out

some biological function in the cell.These graphscanbeused

to,forexample,studymolecularpathway—chainsofmolecular

interactions ina cellular process.

4. Network packet traffic graphs: Vertices are IP (Internet

protocol)addressesandedgesarethepacketsthatflowbetween

them.Such graphs are used for analyzingnetwork security,

studying the spread of worms,and trackingcriminalor non-

criminal activity.

5. Neuralnetworks:Verticesrepresentneuronsandedgesarethe

synapsesbetweenthem.Neuralnetworksareusedtounderstand

howourbrainworksandhowconnectionschangewhenwelearn.

Thehumanbrainhasabout1011neuronsandcloseto1015 synapses.

DFS–DepthFirstSearch

DepthFirstSearch(DFS)algorithmtraversesagraph inadepthwardmotionandusesastackto remember to

get the next vertex to start a search, when a dead end occurs in any iteration.

As inthe examplegivenabove, DFSalgorithmtraversesfromStoA toDtoG toE toBfirst,thentoF and lastly

to C. It employs the following rules.

 Rule1−Visittheadjacentunvisitedvertex.Markitasvisited.Displayit.Pushitinastack.

 Rule2−Ifnoadjacent vertexisfound,popup avertexfromthestack.(It willpopupallthe vertices

from the stack, which do not have adjacent vertices.)

 Rule3−RepeatRule1andRule2untilthestackisempty.

Step Traversal Description

1

Initializethestack.

2

Mark S as visited and put it onto the

stack. Explore any unvisited adjacent

nodefromS.Wehavethreenodesand we

can pick any of them. For this example,

we shall take the node in an

alphabetical order.

3

MarkAas visitedandput itontothe

stack.Exploreanyunvisitedadjacent

node from A. Both S and D are

adjacent to A but we are concerned

for unvisited nodes only.

4

VisitDandmarkitasvisitedandput onto

the stack. Here, we

have B and C nodes, which are

adjacenttoDandbothareunvisited.

However,weshallagainchooseinan

alphabetical order.

5

We choose B, mark it as visited and

put onto the stack. Here B does not

haveanyunvisitedadjacentnode.So,

we pop B from the stack.

6

Wecheckthestacktopforreturnto

thepreviousnodeandcheckifithas

any unvisited nodes. Here, we

findDtobe onthetopofthestack.

7

Onlyunvisitedadjacentnode is

fromDisCnow.SowevisitC,markit as

visited and put it onto the stack.

DFS(G, u)

u.visited=true

foreachv∈G.Adj[u]

ifv.visited==false

DFS(G,v)

init(){

For each u ∈ G

u.visited=false

Foreachu∈G DFS(G,

u)

}

ApplicationofDFSAlgorithm

1. Forfindingthepath

2. Totestifthegraphisbipartite

3. Forfindingthestronglyconnectedcomponentsofa graph

4. Fordetectingcyclesinagraph

BreadthFirstSearch

BreadthFirstSearch(BFS)algorithmtraversesagraph inabreadthwardmotionandusesaqueue to

remember to get the next vertex to start a search, when a dead end occurs in any iteration.

Asinthe examplegivenabove,BFSalgorithmtraversesfromAtoBtoEtoFfirst thentoCandG lastly to D. It

employs the following rules.

 Rule1−Visittheadjacentunvisitedvertex.Markitasvisited.Displayit.Insertitinaqueue.

 Rule2−Ifnoadjacentvertexisfound,removethefirstvertexfromthequeue.

 Rule3− RepeatRule1andRule2untilthequeueisempty.

Step Traversal Description

1

Initializethequeue.

2

WestartfromvisitingS(starting node),

and mark it as visited.

3

We then see an unvisited adjacent

nodefromS.Inthisexample,wehave

three nodes but alphabetically we

choose A, mark it as visited and

enqueue it.

4

Next, the unvisited adjacent node

fromSisB.Wemarkitasvisitedand

enqueue it.

5

Next, the unvisited adjacent node

fromSisC.Wemarkitasvisitedand

enqueue it.

6

Now, S is left with no unvisited

adjacentnodes.So,wedequeueand

find A.

7

From A we have D as

unvisitedadjacentnode.We

mark it as visited and

enqueue it.

BFSpseudocode

createaqueueQ

markvasvisitedandputvintoQ while

Q is non-empty

removetheheaduofQ

markandenqueueall(unvisited)neighboursofu

BFSAlgorithmComplexity

ThetimecomplexityoftheBFSalgorithmis representedintheformofO(V +E),whereVis the number of

nodes and E is the number of edges.

ThespacecomplexityofthealgorithmisO(V).

BFSAlgorithmApplications

1. Tobuildindexbysearchindex

2. ForGPSnavigation

3. Pathfindingalgorithms

4. InFord-Fulkersonalgorithmtofindmaximumflowinanetwork

5. Cycledetectioninanundirectedgraph

6. Inminimumspanningtree

Connectedgraph,StronglyconnectedandBi-Connectivity

Connected Graph Component

Aconnectedcomponentorsimplycomponent ofanundirectedgraphisasubgraphinwhicheach pair of

nodes is connected with each other via a path.

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
https://www.baeldung.com/cs/graphs
https://en.wikipedia.org/wiki/Path_graph

StronglyConnectedGraph

The Kosaraju algorithm is a DFS based algorithm used to find Strongly Connected

Components(SCC)inagraph.It isbasedontheideathatifoneisabletoreachavertexvstarting

fromvertexu, thenoneshouldbe abletoreachvertexustartingfromvertexvand ifsuchis thecase, one can

say that vertices u and v are strongly connected - they are in a strongly connected sub- graph.

stackSTACK

voidDFS(intsource){

visited[s]=true

forallneighboursXofsourcethatarenotvisited:

DFS(X)

STACK.push(source)

}

CLEARADJACENCY_LIST

foralledgese:

first = one end point of e

second=otherendpointofe

ADJACENCY_LIST[second].push(first)

whileSTACKisnotempty:

source=STACK.top()

STACK.pop()

ifsourceisvisited:

continue

else :

DFS(source)

BiConnectivityGraph

An undirected graph is said to be a biconnected graph, if there are two vertex-disjoint paths

betweenanytwoverticesarepresent.Inotherwords,wecansay thatthereisacyclebetweenany two

vertices.

WecansaythatagraphGisabi-connectedgraphifitisconnected,andthereare noarticulation points or cut

vertex are present in the graph.

Tosolvethisproblem,wewillusetheDFStraversal.UsingDFS,wewilltrytofindifthereisany

articulationpointispresentornot.WealsocheckwhetherallverticesarevisitedbytheDFSornot, if not we

can say that the graph is not connected.

PseudocodeforBi connectivity
isArticulation(start,visited,disc,low,parent)

Begin

time := 0 //thevalueoftimewillnotbeinitializedfornextfunctioncalls

dfsChild := 0

markstartasvisited

setdisc[start]:=time+1andlow[start]:=time+1 time

:= time + 1

forallvertexvinthegraph G,do

ifthereisanedgebetween(start,v),then if v

is visited, then

increasedfsChild

parent[v]:=start

ifisArticulation(v,visited,disc,low,parent)istrue,then

return ture

low[start]:=minimumoflow[start]andlow[v] if

parent[start] is φ AND dfsChild > 1, then

returntrue

ifparent[start]isφANDlow[v]>=disc[start],then return

true

else if v is not the parent of start,

thenlow[start]:=minimumoflow[start]anddisc[

v]

donereturn

false

End

isBiconnected(graph)

Begin

initiallysetallverticesareunvisitedandparentofeachverticesareφ if

isArticulation(0, visited, disc, low, parent) = true, then

returnfalse

foreachnodeiofthegraph,do if i

is not visited, then

returnfalse

done

returntrue

End

MinimumSpanningTree

A Spanning Tree is a tree which have V vertices and V-1 edges. All nodes in a spanning tree

are reachable from each other.

A Minimum Spanning Tree(MST) or minimum weight spanning tree for a weighted,

connected, undirected graph is a spanning tree having a weight less than or equal to the

weight of every other possible spanning tree. The weight of a spanning tree is the sum of

weights given to each edge of the spanning tree. In short out of all spanning trees of a given

graph, the spanning tree having minimum weight is MST.

AlgorithmsforfindingMinimumSpanning Tree(MST):-

1. Prim’sAlgorithm

2. Kruskal’sAlgorithm

Prim’sAlgorithm
Prim'salgorithmisaminimumspanningtreealgorithmthattakesagraphasinputandfindsthe subset of the

edges of that graph which

 formatreethatincludeseveryvertex

 hastheminimumsumofweightsamongallthetreesthatcanbeformedfromthegraph

HowPrim'salgorithmworks

It falls under a class of algorithms called greedy algorithmsthat find the local optimum in the hopes

of finding a global optimum.

Westart fromonevertexandkeepaddingedgeswiththelowestweight untilwereachourgoal. The steps

for implementing Prim's algorithm are as follows:

1. Initializetheminimumspanningtreewithavertexchosenat random.

2. Find all the edges that connect the tree to new vertices, find the minimum and add it to the

tree

3. Keeprepeatingstep2untilwegetaminimumspanningtree

ExampleofPrim'salgorithm

Startwithaweightedgraph

Chooseavertex

Choosetheshortestedgefromthisvertexandaddit

Choosethenearestvertexnotyetinthesolution

Choosethenearestedgenotyetinthesolution,iftherearemultiplechoices,chooseoneatrandom

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
https://www.programiz.com/dsa/greedy-algorithm

Prim'sAlgorithm pseudocode
The pseudocode for prim's algorithm shows how we create two sets of vertices U and V-U. U

contains the list of vertices that have been visited and V-U the list of vertices that haven't. One by

one, we move vertices from set V-U to set U by connecting the least weight edge.

T=∅;

U={1};

while(U≠V)

let (u,v)be thelowestcostedgesuchthatu∈ Uandv∈ V- U;

T=T∪ {(u,v)}

U =U∪ {v}

Prim'sAlgorithmComplexity

ThetimecomplexityofPrim'salgorithmisO(ElogV).

KruskalAlgorithm

Kruskal's algorithm is a minimum spanning treealgorithm that takes a graph as input and finds the

subset of the edges of that graph which

 formatreethatincludeseveryvertex

 hastheminimumsumofweightsamongallthetreesthatcanbeformedfromthegraph

HowKruskal'salgorithmworks

It falls under a class of algorithms called greedy algorithmsthat find the local optimum in the hopes

of finding a global optimum.

Westart fromtheedgeswiththe lowestweightandkeepaddingedgesuntilwereachourgoal. The steps

for implementing Kruskal's algorithm are as follows:

1. Sortalltheedgesfromlowweighttohigh

2. Taketheedgewiththelowestweightandaddittothespanningtree.Ifaddingtheedge created a

cycle, then reject this edge.

3. Keepaddingedgesuntilwereachallvertices.

ExampleofKruskal'salgorithm

Startwithaweightedgraph

Choosetheedgewiththeleastweight,iftherearemorethan1,chooseanyone

https://www.programiz.com/dsa/spanning-tree-and-minimum-spanning-tree
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm

Choosethenextshortestedgeandaddit

Choosethenextshortestedgethatdoesn'tcreateacycleandaddit

Choosethenextshortestedgethatdoesn'tcreateacycleandaddit

Repeatuntilyouhaveaspanning tree

KruskalAlgorithmPseudocode

KRUSKAL(G):

A =∅

Foreachvertexv∈G.V:

MAKE-SET(v)

Foreachedge(u,v)∈G.Eorderedbyincreasingorderbyweight(u,v):

ifFIND-SET(u)≠FIND-SET(v):

A=A∪{(u,v)}

UNION(u, v)

returnA

ShortestPathAlgorithm

The shortest path problem is about finding a path between vertices in a graph such that the

totalsum of the edges weights is minimum.

AlgorithmforShortestPath

1. BellmanAlgorithm

2. DijkstraAlgorithm

3. FloydWarshallAlgorithm

BellmanAlgorithm
BellmanFordalgorithmhelpsusfindtheshortestpathfromavertextoallotherverticesofa weighted graph.

ItissimilartoDijkstra'salgorithmbutitcanworkwithgraphsinwhichedgescanhavenegative weights.

https://www.programiz.com/dsa/dijkstra-algorithm

HowBellmanFord'salgorithmworks

Bellman Ford algorithm works by overestimating the length of the path from the starting vertex toall

other vertices. Then it iteratively relaxes those estimates by finding new paths that are shorter than

the previously overestimated paths.

Bydoingthisrepeatedlyforallvertices,wecanguaranteethattheresultisoptimized.

Step-1forBellmanFord'salgorithm

Step-2forBellmanFord'salgorithm

Step-4forBellmanFord'salgorithm

Step-5forBellmanFord'salgorithm

Step-6forBellmanFord'salgorithm

BellmanFordPseudocode

Weneedtomaintainthepathdistanceofeveryvertex.Wecanstorethatinanarrayofsizev, where v is the

number of vertices.

We also want to be able to get the shortest path, not only know the length of the shortest path. For

this, we map each vertex to the vertex that last updated its path length.

Oncethe algorithmisover,wecanbacktrack fromthe destinationvertextothesourcevertextofind the

path.

functionbellmanFord(G,S) for

each vertex V in G

distance[V] <- infinite

previous[V]<-NULL

distance[S] <- 0

for each vertex V in

Gforeachedge(U,V)inG

tempDistance<-distance[U]+edge_weight(U,V) if

tempDistance < distance[V]

distance[V]<-tempDistance

previous[V] <- U

foreachedge (U,V)inG

Ifdistance[U]+edge_weight(U,V)<distance[V}

Error:NegativeCycleExists

return distance[], previous[]

Bellman Ford's Complexity

Time Complexity

DijkstraAlgorithm

Dijkstra'salgorithmallowsustofindtheshortestpathbetweenanytwoverticesofa graph.

Itdiffersfromtheminimumspanningtreebecausetheshortestdistancebetweentwovertices might not

include all the vertices of the graph.

HowDijkstra'sAlgorithmworks

Dijkstra's Algorithm works on the basis that any subpath B -> D of the shortest path A -> D between

vertices A and D is also the shortest path between vertices B and D.

BestCaseComplexity O(E)

AverageCaseComplexity O(VE)

WorstCaseComplexity O(VE)

Eachsubpathistheshortest path

Djikstra used this property in the opposite direction i.e we overestimate the distance of each vertex

from the starting vertex. Then we visit each node and its neighbors to find the shortest subpath to

those neighbors.

The algorithm uses a greedy approach in the sense that we find the next best solution hoping that

the end result is the best solution for the whole problem.

ExampleofDijkstra'salgorithm

Itiseasiertostartwithanexampleandthenthinkaboutthealgorithm.

Startwithaweightedgraph

Chooseastartingvertexandassigninfinitypathvaluestoallotherdevices

Gotoeachvertexandupdateitspath length

Ifthepathlengthoftheadjacentvertexislesserthannewpathlength,don'tupdateit

Avoidupdatingpathlengthsofalreadyvisitedvertices

Aftereachiteration,wepicktheunvisitedvertexwiththeleastpathlength.Sowechoose5before7

Noticehowtherightmostvertexhasitspathlengthupdatedtwice

Repeatuntilalltheverticeshavebeenvisited

Djikstra'salgorithmpseudocode

Weneedtomaintainthepathdistanceofeveryvertex.Wecanstorethatinanarrayofsizev, where v is the

number of vertices.

We also want to be able to get the shortest path, not only know the length of the shortest path. For

this, we map each vertex to the vertex that last updated its path length.

Oncethe algorithmisover,wecanbacktrack fromthe destinationvertextothesourcevertextofind the

path.

Aminimumpriorityqueuecanbeusedtoefficiently receivethe vertexwithleastpathdistance. function

dijkstra(G, S)

for each vertex V in G

distance[V]<-infinite

previous[V] <- NULL

IfV!=S,addVtoPriorityQueueQ

distance[S] <- 0

whileQISNOTEMPTY

U<-ExtractMINfromQ

foreachunvisitedneighbourVofU

tempDistance<-distance[U]+edge_weight(U,V) if

tempDistance < distance[V]

distance[V]<-tempDistance

previous[V] <- U

returndistance[],previous[]

Dijkstra'sAlgorithmComplexity

TimeComplexity:O(ELogV)

where,EisthenumberofedgesandVisthenumberofvertices. Space

Complexity: O(V)

FloydWarshallAlgorithm

Floyd-Warshall Algorithm is an algorithm for finding the shortest path between all the pairs of

vertices in a weighted graph. This algorithm works for both the directed and undirected weighted

graphs. But, it does not work for the graphs with negative cycles (where the sum of the edges in a

cycle is negative).

Aweightedgraphisagraph inwhicheachedgehasanumericalvalueassociatedwith it.

Floyd-Warhshall algorithm is also called as Floyd's algorithm, Roy-Floyd algorithm, Roy-Warshall

algorithm, or WFI algorithm.

Thisalgorithmfollowsthedynamicprogrammingapproachtofindtheshortestpaths.

HowFloyd-WarshallAlgorithmWorks?

Letthegivengraphbe:

Initialgraph

Followthestepsbelowtofindtheshortestpathbetweenallthepairsof vertices.

1. CreateamatrixA0ofdimensionn*nwherenisthenumberofvertices.Therowandthe column are

indexed as i and j respectively. i and j are the vertices of the graph.

EachcellA[i][j]isfilledwiththedistancefromtheithvertextothejthvertex.Ifthereisno path from ith

vertex to jth vertex, the cell is left as infinity.

Filleachcellwiththedistancebetweenithandjthvertex

2. Now, create a matrix A1 using matrix A0. The elements in the first column and the first

roware left as they are. The remaining cells are filled in the following way.

Letkbetheintermediatevertexintheshortestpathfromsourcetodestination.Inthis step, k is the

first vertex. A[i][j] is filled with (A[i][k] + A[k][j]) if (A[i][j] > A[i][k] + A[k][j]).

Thatis,ifthedirectdistancefromthesourcetothedestinationisgreaterthanthepath h the vertex k,

then the cell is filled with A[i][k] + A[k][j].

https://www.programiz.com/dsa/dynamic-programming

Inthisstep,k isvertex1.Wecalculatethedistancefromsourcevertextodestination vertex
through this vertex

k. Calcula

tethedistancefromthesourcevertextodestinationvertexthroughthisvertexk

Forexample:ForA1[2,4],thedirectdistancefromvertex2to4is4andthesumofthe

distancefromvertex2to4throughvertex(ie.fromvertex2 to1andfromvertex1to4)is7.

Since4<7,A0[2,4]isfilledwith4.

3. Similarly, A2 is created using A1. The elements in the second column and the second row are

left as they are.

Inthisstep,kisthesecond vertex(i.e.vertex2).Theremainingstepsarethesameasin step

2. Calcula

tethedistancefromthesourcevertextodestinationvertexthroughthisvertex2

4. Similarly,A3andA4isalsocreated.

Calculat

e the distance from the source vertex to destination vertex through this

vertex C

alculatethedistancefromthesourcevertextodestinationvertexthroughthisvertex4

5. A4givestheshortestpathbetweeneachpairofvertices.

Floyd-WarshallAlgorithm

n=noof vertices

A=matrixofdimensionn*n for

k = 1 to n

for i = 1 to n

forj=1ton

Ak[i,j]=min(Ak-1[i,j],Ak-1[i,k]+Ak-1[k,j])

return A

TimeComplexity

There are three loops. Each loop has constant complexities. So, the time complexity of the Floyd-

Warshall algorithm is O(n3).

NetworkFlow
Flow Network is a directed graph that is used for modeling material Flow. There are two different

vertices; one is asource whichproducesmaterialat some steady rate,and anotherone issink which

consumes the content at the same constant speed. The flow of the material at any mark in the

system is the rate at which the element moves.

Somereal-life problemslikethe flowofliquids throughpipes, the currentthroughwiresanddelivery of

goods can be modelled using flow networks.

Definition:AFlowNetworkisadirectedgraphG=(V,E)suchthat

1. For each edge (u, v) ∈ E, we associate a nonnegative weight capacity c (u, v) ≥ 0.If (u, v) ∉ E,

we assume that c (u, v) = 0.

2. Therearetwodistinguishingpoints,thesources,andthesink t;

3. Foreveryvertexv∈ V,thereisapathfromstotcontainingv.

Let G = (V, E) be a flow network. Let s be the source of the network, and let t be the sink. A flow in G

is a real-valued function f: V x V→R such that the following properties hold:

PlayVideo

o CapacityConstraint:Forallu,v∈ V,weneedf(u,v)≤c(u,v).

o SkewSymmetry:Forallu,v∈ V,weneedf(u,v)=-f(u,v).

o FlowConservation:Forallu∈V-{s,t},we need

Thequantityf(u,v),whichcanbepositiveornegative,isknownasthenetflowfromvertexuto

vertexv.Inthemaximum-flowproblem,wearegivenaflownetworkGwithsourcesandsinkt,and

aflowofmaximumvaluefromstot.

Ford-FulkersonAlgorithm

Initially,theflowofvalueis 0.Find someaugmentingPathpandincreaseflowf oneachedge of pby residual

Capacity cf (p). When no augmenting path exists, flow f is a maximum flow.

FORD-FULKERSONMETHOD(G,s,t)

1. Initializeflowfto0

2. whilethereexistsanaugmentingpathp

3. doargumentflowfalongp

4. Returnf

FORD-FULKERSON(G,s,t)

1. foreachedge(u,v)∈E [G]

2. dof[u, v]←0

3. f[u,v]←0

4. whilethereexistsapathpfromstotintheresidualnetworkGf.

5. docf(p)←min?{Cf(u,v):(u,v)isonp}

6. foreachedge(u,v)inp

7. dof [u,v]←f[u, v]+ cf(p)

8. f[u,v]←-f[u,v]

Example: Each Directed Edge is labeled with capacity. Use the Ford-Fulkerson algorithm to find the

maximum flow.

Solution: The left side of each part shows the residual network Gfwith a shaded augmenting

pathp,and the right side of each part shows the net flow f.

MaximumBipartiteMatching
The bipartite matching is a set of edges in a graph is chosen in such a way, that no two edges in that

set will share an endpoint. The maximum matching is matching the maximum number of edges.

When the maximum match is found, we cannot add another edge. If one edge is added to the

maximum matched graph, it is no longer a matching. For a bipartite graph, there can be more than

one maximum matching is possible.

Algorithm

bipartiteMatch(u,visited,assign)

Input:Startingnode,visitedlisttokeeptrack,assignthelisttoassignnodewithanothernode.

Output−Returnstruewhenamatchingforvertexuispossible.

Begin

forallvertexv,whichareadjacentwithu,do if v is

not visited, then

markvas visited

ifvisnotassigned,orbipartiteMatch(assign[v],visited,assign)istrue,then assign[v] := u

returntrue

done

returnfalse

End

maxMatch(graph)Input

−Thegivengraph.

Output−Themaximumnumberofthematch.

Begin

initiallynovertexisassigned

count := 0

for all applicant u in M, do

makeallnodeasunvisited

ifbipartiteMatch(u,visited,assign),then

increase count by 1

done

End

Unit3

DivideandConquerAlgorithm

Adivideandconqueralgorithmis astrategy ofsolvingalargeproblemby

1. breakingtheproblemintosmallersub-problems

2. solvingthesub-problems,and

3. combiningthemtogetthedesiredoutput.

Tousethedivideandconqueralgorithm,recursionis used.

HowDivideandConquerAlgorithmsWork?

Herearethesteps involved:

1. Divide:Dividethegivenproblemintosub-problemsusing recursion.

2. Conquer:Solvethesmallersub-problemsrecursively.Ifthesubproblemissmall

enough, then solve it directly.

3. Combine:Combinethesolutionsofthesub-problemsthatarepartoftherecursive

process to solve the actual problem.

FindingMaximumand Minimum

To find the maximum and minimum numbers in a given array numbers[] of size n, the

followingalgorithmcan beused.Firstwearerepresentingthenaivemethodandthen we will

present divide and conquer approach.

NaïveMethod

Naïve method is a basic method to solve any problem. In this method, the maximum and

minimumnumbercanbefoundseparately.Tofindthemaximumandminimumnumbers, the

following straightforward algorithm can be used.

Algorithm:Max-Min-Element(numbers[])

max := numbers[1]

min:=numbers[1]

for i = 2 to n do

ifnumbers[i]>maxthen

max := numbers[i]

ifnumbers[i]<minthen

min := numbers[i]

return(max,min)

Analysis

ThenumberofcomparisoninNaivemethodis2n-2.

Thenumberofcomparisonscan bereducedusingthedivideandconquerapproach. Following is

the technique.

DivideandConquer Approach

In this approach, the array is divided into two halves. Then using recursive approach

maximum and minimum numbers in each halves are found. Later, return the maximum of

two maxima of each half and the minimum of two minima of each half.

Inthisgivenproblem,thenumberofelementsin anarrayisy−x+1, whereyisgreaterthan or equal

to x.

Max−Min(x,y)will returnthemaximumandminimum valuesofanarraynumbers[x...y].

Algorithm:Max-Min(x,y)

ify –x ≤1then

return(max(numbers[x],numbers[y]),min((numbers[x],numbers[y]))

else

(max1,min1):=maxmin(x,⌊((x+ y)/2)⌋)

(max2,min2):=maxmin(⌊((x+y)/2)+1)⌋,y)

return(max(max1, max2),min(min1,min2))

Analysis

LetT(n) bethenumberofcomparisonsmadebyMax−Min(x,y), wherethenumberof

elements n=y−x+1.

IfT(n)representsthenumbers,thentherecurrencerelationcanberepresentedas

Letusassumethatnisintheformofpowerof 2.Hence,n= 2kwherekisheightofthe recursion tree.

So,

ComparedtoNaïvemethod,individeandconquerapproach,thenumberofcomparisonsis less.

However, using the asymptotic notation both of the approaches are represented

by O(n).

MergeSort

MergeSortisoneofthemostpopularsortingalgorithmsthat isbasedontheprinciple of

Divide and Conquer Algorithm.

Here,aproblemisdividedintomultiplesub-problems.Eachsub-problemissolved individually.

Finally, sub-problems are combined to form the final solution.

MergeSort example

DivideandConquer Strategy

UsingtheDivideandConquertechnique,wedivideaproblemintosubproblems.Whenthe

solution to each subproblem is ready, we 'combine' the results from the subproblems to

solve the main problem.

Supposewe hadtosortanarrayA.Asubproblemwouldbetosortasub-sectionofthis array

starting at index p and ending at index r, denoted as A[p..r].

Divide

Ifqisthehalf-waypointbetweenpandr,thenwecansplitthesubarrayA[p..r]intotwo arrays

A[p..q] and A[q+1, r].

Conquer

Intheconquerstep,wetrytosortboth thesubarraysA[p..q]andA[q+1,r].Ifwehaven'tyet reached

the base case, we again divide both these subarrays and try to sort them.

https://www.programiz.com/dsa/sorting-algorithm
https://www.programiz.com/dsa/divide-and-conquer

Combine

Whentheconquer stepreachesthebasestepandwegettwosorted

subarraysA[p..q]andA[q+1,r]forarrayA[p..r],wecombinetheresultsbycreatingasorted array

A[p..r] from two sorted subarrays A[p..q] and A[q+1, r].

MergeSort Algorithm

TheMergeSortfunctionrepeatedlydividesthearrayintotwo halvesuntilwe reachastage where

we try to perform MergeSort on a subarray of size 1 i.e. p == r.

Afterthat,themergefunctioncomesintoplayandcombinesthesortedarraysinto larger arrays

until the whole array is merged.

MergeSort(A,p,r): if

p > r

return

q = (p+r)/2

mergeSort(A, p, q)

mergeSort(A,q+1,r)

merge(A, p, q, r)

voidmerge(intarr[],intp,intq,intr)

{

//CreateL←A[p..q]andM←A[q+1..r] int

n1 = q - p + 1;

intn2=r-q;

intL[n1],M[n2];

for(inti=0;i<n1;i++) L[i] =

arr[p + i];

for(intj=0;j<n2;j++) M[j]

= arr[q + 1 + j];

//Maintaincurrentindexofsub-arraysandmainarray int i,

j, k;

i=0;

j=0;

k=p;

//Untilwereacheither endofeitherLorM,picklarger among

//elementsLandMandplacetheminthecorrectpositionatA[p..r] while (i <

n1 && j < n2)

{
if(L[i] <=M[j])

{
arr[k]= L[i];

}

else
{

}

k++;
}

i++;

arr[k]=M[j]; j++;

//WhenwerunoutofelementsineitherL orM,
//pickuptheremainingelementsandputinA[p..r] while (i

< n1)
{

arr[k]=L[i];
i++;
k++;

}

while(j <n2)
{

}
}

arr[k]=M[j]; j++;
k++;

Time Complexity

Best Case Complexity: O(n*log n)

Worst Case Complexity: O(n*log n)

AverageCaseComplexity:O(n*logn)

Dynamic Programming

MatrixChainMultiplication

Dynamicprogrammingisamethodforsolvingoptimization problems.

Itisalgorithmtechniquetosolve acomplexandoverlappingsub-problems.Computethe

solutionsto thesub-problemsonce andstorethesolutionsinatable, sothattheycanbe

reused (repeatedly) later.

DynamicprogrammingismoreefficientthenotheralgorithmmethodslikeasGreedy method,

Divide and Conquer method, Recursion method, etc….

The real time many of problems are not solve using simple and traditional approach

methods. like as coin change problem , knapsack problem, Fibonacci sequence generating ,

complexmatrixmultiplication….TosolveusingIterativeformula,tediousmethod,repetition

again and again it become a more time consuming and foolish. some of the problem it

should be necessary to divide a sub problems and compute its again and again to solve a

suchkindofproblemsandgivetheoptimalsolution,effectivesolutiontheDynamic programming

is needed…

BasicFeaturesofDynamicprogramming:-

 Getallthepossiblesolutionandpickupbestandoptimal solution.

 Workonprincipalofoptimality.

 Definesub-partsandsolvethem usingrecursively.

 Lessspace complexityButmoreTimecomplexity.

 Dynamicprogrammingsavesusfromhavingtorecomputepreviouslycalculatedsub-

solutions.

 Difficultto understanding.

We are covered a many of the real world problems.In our day to day life when we do

making coin change, robotics world, aircraft, mathematical problems like Fibonacci

sequence,simplematrixmultiplicationofmorethentwomatricesanditsmultiplication

possibility is many more so in that get the best and optimal solution. NOW we can look

about one problem that is MATRIX CHAIN MULTIPLICATION PROBLEM.

Suppose,Wearegivenasequence(chain)(A1,A2……An)ofnmatricestobemultiplied,and we

wish to compute the product (A1A2…..An).We can evaluate the above expression using the

standard algorithm for multiplying pairs of matrices as a subroutine once we have

parenthesized it to resolve all ambiguities in how the matrices are multiplied together.

Matrixmultiplicationisassociative,andsoallparenthesizationsyield thesameproduct.For

example, if the chain of matrices is (A1, A2, A3, A4) then we can fully parenthesize the

product (A1A2A3A4) in five distinct ways:

1:-(A1(A2(A3A4))),

2:-(A1((A2A3)A4)),

3:-((A1A2)(A3A4)),

4:-((A1(A2A3))A4),

5:-(((A1A2)A3)A4).

WecanmultiplytwomatricesAandBonlyiftheyarecompatible.thenumberofcolumnsof A must

equal the number of rows of B. If A is a p x q matrix and B is a q x r matrix,the resulting

matrix C is a p x r matrix. The time to compute C is dominated by the number of scalar

multiplications is pqr. we shall express costs in terms of the number of scalar

multiplications.For example, if we have three matrices (A1,A2,A3) and its cost is

(10x100),(100x5),(5x500)respectively. so we can calculate thecost of scalarmultiplication is

10*100*5=5000 if ((A1A2)A3), 10*5*500=25000 if (A1(A2A3)), and so on cost

calculation. Note that in the matrix-chain multiplication problem, we are not actually

multiplyingmatrices.Ourgoalisonlytodetermineanorderformultiplyingmatricesthat has the

lowest cost.that is here is minimum cost is 5000 for above example .So problem is we can

perform a many time of cost multiplication and repeatedly the calculation is

performing.sothisgeneralmethodisverytimeconsumingandtedious.Sowecan apply

dynamic programming for solve this kind of problem.

whenweusedtheDynamicprogrammingtechniqueweshallfollowsomesteps.

1. Characterizethestructureofanoptimal solution.

2. Recursivelydefinethevalueofanoptimalsolution.

3. Computethevalueofanoptimal solution.

4. Constructanoptimalsolutionfromcomputedinformation.

wehavematricesofanyoforder.ourgoalisfindoptimalcostmultiplicationof matrices.when we

solve the this kind of problem using DP step 2 we can get

m[i ,j]=min {m[i , k]+m[i+k, j]+ pi-1*pk*pj}ifi <j….wherep isdimensionofmatrix,i≤ k < j …..

Thebasicalgorithmofmatrixchainmultiplication:-

//MatrixA[i]hasdimensiondims[i-1]xdims[i]fori =1..n

MatrixChainMultiplication(intdims[])

{

//length[dims]=n+1

n=dims.length -1;

//m[i,j]=Minimumnumberofscalarmultiplications(i.e.,cost)

//neededtocomputethematrixA[i]A[i+1]...A[j]= A[i..j]

//Thecostiszerowhenmultiplyingonematrix

for(i=1;i<=n;i++)

m[i, i] = 0;

for(len=2;len<=n;len++){

//Subsequence lengths

for(i=1;i<=n-len+1;i++){ j = i +

len - 1;

m[i, j]=MAXINT;

for(k =i;k <=j-1;k++) {

cost= m[i,k]+m[k+1,j]+dims[i-1]*dims[k]*dims[j];

if(cost<m[i,j]){ m[i,

j] = cost;

s[i,j]=k;

//Indexofthesubsequencesplitthatachievedminimalcost

}

}

}

}

}

ExampleofMatrixChainMultiplication

Example:Wearegiventhesequence {4, 10,3, 12,20, and7}.Thematriceshavesize4 x10,

10x3,3x12,12x20,20x7.We needtocomputeM[i,j],0 ≤i, j≤ 5.We knowM [i,i]=0 for all i.

Letusproceedwithworkingawayfromthediagonal.We computetheoptimalsolutionfor the

product of 2 matrices.

InDynamicProgramming,initializationofeverymethoddoneby‘0’.Soweinitializeitby ‘0’.It will

sort out diagonally.

Wehavetosortoutallthecombinationbuttheminimumoutputcombinationistakeninto consideration.

CalculationofProductof2matrices:

1. m (1,2)=m1x m2

=4x 10x10x3

=4x 10x 3=120

2. m (2,3)=m2x m3

=10x 3x3x 12

=10x 3x12=360

3. m (3,4)=m3x m4

=3x12x12x20

=3x12x20=720

4. m (4,5)=m4x m5

=12x 20x20x 7

=12x 20x 7=1680

 Weinitializethediagonalelementwithequali,j valuewith‘0’.

 Afterthatseconddiagonalissorted outandwegetallthevaluescorrespondedtoit Now

the third diagonal will be solved out in the same way.

Nowproductof3 matrices:

M[1,3] =M1M2 M3

1. Therearetwocasesbywhichwecansolvethismultiplication:(M1xM2)+M3,M1+ (M2x

M3)

2. Aftersolvingbothcaseswechoosethecase inwhichminimumoutputisthere.

M[1,3]=264

AsComparingbothoutput264isminimuminbothcasesso weinsert264intableand(M1 x M2) +

M3 this combination is chosen for the output making.

M[2,4] =M2M3 M4

1. Therearetwocasesbywhichwecansolvethismultiplication:(M2xM3)+M4,

M2+(M3 x M4)

2. Aftersolvingbothcaseswechoosethecase inwhichminimumoutputisthere.

M[2,4]=1320

AsComparingbothoutput1320isminimuminbothcasessoweinsert1320intableand M2+(M3 x

M4) this combination is chosen for the output making.

M[3,5]= M3M4M5

1. Therearetwocasesbywhichwecansolvethismultiplication:(M3xM4)+M5,M3+ (

M4xM5)

2. Aftersolvingbothcaseswechoosethecase inwhichminimumoutputisthere.

M[3,5]=1140

AsComparingbothoutput1140isminimuminbothcasessoweinsert1140intableand (M3 x

M4) + M5this combination is chosen for the output making.

NowProductof4matrices:

M[1,4] =M1M2M3 M4

Therearethreecasesbywhich wecansolvethismultiplication:

1. (M1 xM2 x M3)M4

2. M1x(M2x M3xM4)

3. (M1xM2)x (M3xM4)

Aftersolvingthesecaseswechoosethecase inwhichminimumoutputisthere

M[1,4]=1080

Ascomparing theoutputofdifferentcases then‘1080’is minimumoutput,sowe insert

1080inthetableand(M1xM2) x(M3xM4) combinationistakenoutinoutputmaking,

M[2,5] =M2 M3M4 M5

Therearethreecasesbywhich wecansolvethismultiplication:

1. (M2x M3x M4)x M5

2. M2x(M3 x M4xM5)

3. (M2x M3)x(M4xM5)

Aftersolvingthesecaseswechoosethecase inwhichminimumoutputisthere

M[2,5]=1350

Ascomparingtheoutputofdifferentcasesthen‘1350’isminimumoutput,sowe insert 1350 in

the table and M2 x(M3 x M4xM5)combination is taken out in output making.

NowProductof5matrices:

M[1,5] =M1M2M3M4 M5

Therearefivecasesbywhichwe cansolvethismultiplication:

1. (M1x M2xM3x M4)xM5

2. M1x(M2 xM3x M4xM5)

3. (M1x M2xM3)xM4 xM5

4. M1x M2x(M3x M4xM5)

Aftersolvingthesecaseswechoosethecase inwhichminimumoutputisthere

M[1,5]=1344

As comparing the output of different cases then ‘1344’ is minimum output, so we insert

1344inthetableandM1xM2x(M3xM4xM5)combinationistakenoutinoutputmaking.

FinalOutputis:

Sowe cangettheoptimalsolutionofmatrices multiplication….

MultiStageGraph

MultistageGraphproblemisdefinedas follow:

 Multistage graph G = (V, E, W) is a weighted directed graph in which vertices are

partitioned into k ≥ 2 disjoint sub sets V = {V1, V2, …, Vk} such that if edge (u, v) is

presentinE thenu∈ Viandv∈ Vi+1,1 ≤i≤ k.Thegoalofmultistagegraphproblemis to find

minimum cost path from source to destination vertex.

 Theinputtothealgorithmisak-stagegraph,nverticesareindexedinincreasing order

of stages.

 Thealgorithmoperatesinthebackwarddirection,i.e.itstartsfromthelast vertexof the

graph and proceeds in a backward direction to find minimum cost path.

 Minimumcostofvertexj∈Vifromvertexr∈Vi+1isdefinedas, Cost[j]

= min{ c[j, r] + cost[r] }

where,c[j, r]istheweightofedge<j, r>andcost[r]isthecostofmovingfromend vertex to

vertex r.

 Algorithmforthemultistagegraphisdescribedbelow:

Algorithm for Multistage Graph

AlgorithmMULTI_STAGE(G,k,n,p)

//Description:Solvemulti-stageproblemusingdynamicprogramming

//Input:

k:NumberofstagesingraphG=(V,E) c[i,

j]:Cost of edge (i, j)

//Output:p[1:k]:Minimumcostpath

cost[n] ← 0

forj←n–1to1do

//Letrbeavertexsuchthat(j,r)inEandc[j,r]+cost[r]isminimum cost[j] ← c[j,

r] + cost[r]

π[j]←r

end

//Findminimumcostpath

p[1] ← 1

p[k]←n

forj←2tok-1do

p[j]←π[p[j-1]]

end

ComplexityAnalysisofMultistageGraph

IfgraphGhas|E|edges,thencostcomputationtimewouldbeO(n +|E|).Thecomplexity of

tracing the minimum cost path would be O(k), k < n. Thus total time complexity of

multistage graph using dynamic programming would be O(n + |E|).

Example

Example:Findminimumpathcostbetweenvertexsandtforfollowingmultistagegraph using

dynamic programming.

Solution:

Solutiontomultistagegraphusingdynamicprogrammingisconstructedas, Cost[j] =

min{c[j, r] + cost[r]}

Here,numberofstagesk=5,numberofverticesn=12, sources=1 andtargett =12 Initialization:

Cost[n]=0⇒Cost[12]=0.

p[1] = s ⇒ p[1] = 1

p[k]=t⇒p[5]=12. r =

t = 12.

Stage4:

Stage3:

Vertex6isconnected tovertices9and10:

Cost[6]=min{c[6,10]+Cost[10],c[6,9]+ Cost[9]}

=min{5+2,6+ 4}=min{7,10}=7

p[6]=10

Vertex7isconnected tovertices9and10:

Cost[7]=min{c[7,10]+Cost[10],c[7,9]+ Cost[9]}

=min{3+2,4+ 4}=min{5,8}=5

p[7]=10

Vertex8isconnected tovertex 10and11:

Cost[8]=min{c[8,11]+Cost[11],c[8,10]+Cost[10]}

=min{6+5,5+2}=min{11,7}=7p[8]=10

Stage2:

Vertex2isconnected tovertices6,7and8:

Cost[2]=min{c[2,6]+Cost[6], c[2,7]+Cost[7], c[2,8] +Cost[8]}

=min{4+7,2+5,1+7}=min{11,7, 8}=7

p[2]=7

Vertex3isconnectedtovertices6and7:

Cost[3]=min{c[3,6]+Cost[6],c[3,7]+Cost[7]}

=min{2+7,7+ 5}=min{9,12}=9

p[3]=6

Vertex4isconnectedtovertex 8:

Cost[4]=c[4, 8]+Cost[8]= 11+7=18

p[4]=8

Vertex5isconnected tovertices7and8:

Cost[5]=min{c[5,7]+Cost[7],c[5,8]+Cost[8]}

=min{11+5,8+7}=min{16,15}=15p[5]=8

Stage1:

Vertex1isconnected tovertices2,3, 4and5:

Cost[1]=min{c[1,2]+Cost[2],c[1, 3]+ Cost[3],c[1,4]+ Cost[4],c[1,5]+Cost[5]}

=min{9+7,7+9,3+18,2+15 }

=min{16,16,21,17}=16p[1]=2

Tracethe solution:

p[1]=2

p[2]=7

p[7]=10

p[10]=12

Minimumcostpathis: 1–2–7–10–12

Costofthepathis:9+2+3+2=16

OptimalBinarySearchTree

 OptimalBinary SearchTreeextends theconceptofBinary searctree. BinarySearch

Tree(BST) isanonlineardatastructurewhich isusedinmanyscientificapplications for

reducing the search time. In BST, left child is smaller than root and right child is

greater than root. This arrangement simplifies the search procedure.

 Optimal Binary Search Tree (OBST) is very useful in dictionary search. The probability

ofsearchingisdifferentfor differentwords. OBST hasgreat applicationintranslation.

If we translate the book from English to German, equivalent words are searched

fromEnglishtoGermandictionaryandreplacedintranslation.Wordsaresearched same

as in binary search tree order.

 Binarysearchtreesimplyarrangesthewordsinlexicographicalorder.Words like

‘the’, ‘is’, ‘there’ are very frequent words, whereas words

like‘xylophone’,‘anthropology’etc.appearsrarely.

 Itisnotawise ideatokeeplessfrequentwordsnearrootinbinarysearchtree. Instead

of storing words in binary search tree in lexicographical order, we shall arrange

them according to their probabilities. This arrangement facilitates few

searches for frequent words as they would be near the root. Such tree is

calledOptimalBinarySearch Tree.

 ConsiderthesequenceofnkeysK=<k1,k2,k3,…,kn>ofdistinctprobabilityinsorted order

such that

k1<k2<…<kn.Wordsbetweeneachpairofkeyleadtounsuccessfulsearch,soforn keys,

binary search tree contains n + 1 dummy keys di, representing unsuccessful searches.

 TwodifferentrepresentationofBSTwithsamefivekeys{k1,k2,k3,k4,k5}probability is

shown in following figure

 With n nodes, there exist (2n)!/((n + 1)! * n!) different binary search trees. An

exhaustivesearchforoptimalbinarysearch treeleadstohugeamountoftime.

 The goal is to construct a tree which minimizes the total search cost. Such tree is

calledoptimalbinarysearchtree.OBSTdoesnotclaimminimumheight.It isalsonot

necessary that parent of sub tree has higher priority than its child.

 Dynamicprogramming canhelpustofindsuchoptima tree.

Binarysearchtreeswith5keys

Mathematicalformulation

 WeformulatetheOBSTwithfollowing observations

 AnysubtreeinOBST containskeysinsortedorderki…kj,where1≤i≤j≤ n.

 Subtreecontainingkeyski…kj hasleaveswithdummykeysdi-1….dj.

 Supposekristherootofsubtreecontainingkeyski…..kj.So,leftsubtreeofroot kr

contains keys

ki….kr-1andrightsubtreecontainkeyskr+1tokj.Recursively,optimalsubtreesare

constructed from the left and right sub trees of kr.

 Lete[i,j]representstheexpected costofsearchingOBST. Withnkeys,ouraimisto find

and minimize e[1, n].

 Basecaseoccurswhenj=i–1,becausewejusthavethedummykeydi-1forthis case.

Expected search cost for this case would be e[i, j] = e[i, i – 1] = qi-1.

 Forthecasej≥i,we havetoselectanykeykrfromki…kjasarootofthetree.

 Withkrasarootkey andsubtreeki…kj,sumofprobability isdefinedas

https://codecrucks.com/dynamic-programming/

(Actualkeystartsatindex1anddummykeystartsatindex0)

Thus,arecursiveformulaforformingtheOBSTisstatedbelow:

e[i,j]givestheexpectedcostintheoptimalbinarysearchtree.

AlgorithmforOptimalBinarySearchTree

Thealgorithmforoptimalbinary searchtree isspecifiedbelow:

AlgorithmOBST(p, q,n)

//e[1…n+1,0…n]: Optimalsubtree

//w[1…n+1,0…n]:Sumofprobability

//root[1…n,1…n]:UsedtoconstructOBST

fori←1ton+1 do

e[i,i–1]←qi–1

w[i, i–1]←qi–1

end

form←1ton do

fori←1ton–m+1 do

j←i+m–1 e[i,

j] ← ∞

w[i,j]←w[i,j–1]+pj+qj

forr←itojdo

t←e[i,r–1]+e[r+1,j]+w[i,j]

ift<e[i,j]then

e[i, j] ← t

root[i, j] ← r

end

end

end

end

return(e,root)

ComplexityAnalysisofOptimalBinarySearchTree

Itisverysimpletoderivethecomplexityofthisapproachfromtheabovealgorithm.It uses

threenestedloops.Statementsin theinnermostloopruninQ(1)time.Therunningtimeof the

algorithm is computed as

Thus,theOBSTalgorithmrunsincubictime

Example

Problem:Let p (1:3)= (0.5,0.1,0.05)q(0:3)=(0.15,0.1,0.05,0.05)Computeand

constructOBSTforabovevaluesusingDynamicapproach.

Solution:

Here,giventhat

RecursiveformulatosolveOBST problemis

DownloadedfromEnggTree.com

i 0 1 2 3

pi 0.5 0.1 0.05

qi 0.15 0.1 0.05 0.05

Where,

Initially,

Now,we willcompute e[i,j]

Initially,

e[1,0]=q0=0.15(∵j=i–1)

e[2,1]= q1=0.1 (∵j=i–1)

e[3,2]=q2=0.05(∵j=i–1)

e[4,3]=q3=0.05(∵j=i–1)

e[1,1]=min{e[1,0]+e[2,1]+w(1,1)}

=min{0.15+0.1+0.75}= 1.0

e[2,2]=min{e[2,1]+e[3,2]+w(2,2)}

=min{0.1+0.05+0.25}= 0.4

e[3,3]=min{e[3,2]+e[4,3]+w(3,3) }

=min{0.05+0.05+ 0.15}=0.25

e[1,3]is minimumforr=1,so r[1,3]=1

e[2,3]is minimumforr=2,so r[2,3]=2

e[1,2]is minimumforr=1,so r[1,2]=1

e[3,3]is minimumforr=3,so r[3,3]=3

e[2,2]is minimumforr=2,so r[2,2]=2

e[1, 1] is minimum for r = 1, so r[1, 1] = 1

LetusnowconstructOBSTforgivendata.

r[1,3] =1, so k1 will be at the root.

k2….3 are on right side of k1

r[2,3]=2,Sok2willbetherootofthissubtree. k3 will

be on the right of k2.

Thus,finally,weget.

Greedy

TechniqueActivitySelectio

n Problem

ActivitySelection problemisaapproachofselectingnon-conflictingtasks basedon startand

endtimeandcan besolved inO(N logN)timeusingasimplegreedyapproach.Modifications of this

problem are complex and interesting which we will explore as well. Suprising, if we use a

Dynamic Programming approach, the time complexity will be O(N^3) that is lower

performance.

The problem statement for Activity Selection is that "Given a set of n activities with their

start and finish times, we need to select maximum number of non-conflicting activities that

can be performed by a single person, given that the person can handle only one activity at a

time." The Activity Selection problem follows Greedy approach i.e. at every step, we can

make a choice that looks best at the moment to get the optimal solution of the complete

problem.

Our objective is to complete maximum number of activities. So, choosing the activity which

is going to finish first will leave us maximum time to adjust the later activities. This is the

intuition that greedily choosing the activity with earliest finish time will give us an optimal

solution. By induction on the number of choices made, making the greedy choice at every

step produces an optimal solution, so we chose the activity which finishes first. If we sort

elements based on their starting time, the activity with least starting time could take the

maximum duration for completion, therefore we won't be able to maximise number of

activities.

Algorithm

ThealgorithmofActivitySelectionisasfollows:

Activity-Selection(Activity, start, finish)

SortActivitybyfinishtimesstoredinfinish

Selected = {Activity[1]}

n=Activity.length j

= 1

fori=2to n:

ifstart[i]≥finish[j]:

Selected=SelectedU{Activity[i]} j

= i

return Selected

Complexity

TimeComplexity:

Whenactivitiesaresortedbytheirfinishtime:O(N)

Whenactivitiesarenotsortedbytheirfinishtime,thetimecomplexityisO(N logN)dueto

complexity of sorting

Inthisexample,wetakethestartandfinishtimeofactivitiesasfollows: start = [1,

3, 2, 0, 5, 8, 11]

finish=[3,4,5, 7,9,10,12]

Sorted by their finish time, the activity 0 gets selected. As the activity 1 has starting time

whichisequaltothe finishtimeofactivity0, itgetsselected.Activities2and3havesmaller starting

time than finish time of activity 1, so they get rejected. Based on similar comparisons,

activities 4 and 6 also get selected, whereas activity 5 gets rejected. In this example, in all

the activities 0, 1, 4 and 6 get selected, while others get rejected.

OptimalMerge Pattern

Mergea setofsortedfilesofdifferentlengthintoa singlesortedfile.Weneedtofindan optimal

solution, where the resultant file will be generated in minimum time.

Ifthenumberofsortedfilesaregiven,therearemanywaystomergethemintoasingle sorted

file.This merge can be performed pairwise. Hence,this type ofmergingis called as 2-way

merge patterns.

As, different pairings require different amounts of time, in this strategy we want to

determineanoptimalwayofmergingmanyfilestogether.Ateachstep,twoshortest sequences

are merged.

Tomergeap-recordfileandaq-recordfilerequirespossiblyp +qrecordmoves,the obvious

choice being, merge the two smallest files together at each step.

Two-way merge patterns can be represented by binary merge trees. Let us consider a set

ofnsortedfiles{f1,f2,f3,…,fn}.Initially,eachelementofthisisconsideredasasinglenode binary

tree. To find this optimal solution, the following algorithm is used.

Algorithm:TREE(n)

fori :=1ton– 1do

declare new node

node.leftchild := least (list)

node.rightchild:=least(list)

node.weight):=((node.leftchild).weight)+((node.rightchild).weight) insert

(list, node);

returnleast (list);

Attheendofthisalgorithm,the weightoftherootnoderepresentstheoptimalcost. Example

Letusconsiderthegivenfiles,f1,f2,f3,f4andf5with20,30,10,5and30numberof elements

respectively.

Ifmergeoperationsareperformedaccordingtotheprovidedsequence,then M1 =

merge f1 and f2 => 20 + 30 = 50

M2=mergeM1andf3=>50+10=60 M3 =

merge M2 and f4 => 60 + 5 = 65 M4

=mergeM3andf5=>65+30=95

Hence,thetotalnumberofoperationsis 50 +

60 + 65 + 95 = 270

Now,thequestionarisesisthereanybetter solution?

Sortingthenumbersaccordingtotheirsizeinanascendingorder, wegetthefollowing sequence −

f4,f3,f1,f2,f5

Hence,mergeoperationscanbeperformedonthissequence M1

= merge f4 and f3 => 5 + 10 = 15

M2=mergeM1andf1=>15+20=35

M3=mergeM2andf2=>35+30=65 M4

=mergeM3andf5=>65+30=95

Therefore,thetotalnumberofoperationsis 15 +

35 + 65 + 95 = 210

Obviously,thisisbetterthanthepreviousone.

Inthiscontext,wearenowgoingtosolvetheproblemusingthisalgorithm. Initial Set

Step1

Step2

Step3

Step4

Hence,thesolutiontakes15+ 35+60+ 95= 205numberofcomparisons.

Huffman Tree

Huffman coding provides codes to characters such that the length of the code depends on

the relative frequency or weight of the corresponding character. Huffman codes are of

variable-length, and without any prefix (that means no code is a prefix of any other). Any

prefix-free binary code can be displayed or visualized as a binary tree with the encoded

characters stored at the leaves.

Huffman tree or Huffman coding tree defines as a full binary tree in which each leaf of the

tree corresponds to a letter in the given alphabet.

The Huffman tree is treated as the binary tree associated with minimum external path

weight that means, the one associated with the minimum sum of weighted path lengths for

the given set of leaves. So the goal is to construct a tree with the minimum external path

weight.

Anexampleisgivenbelow-

Letter frequency table

Letter z k m c u d l e

Frequency 2 7 24 32 37 42 42 120

Huffmancode

Letter Freq Code Bits

e 120 0 1

d 42 101 3

l 42 110 3

u 37 100 3

c 32 1110 4

m 24 11111 5

k 7 111101 6

z 2 111100 6

TheHuffmantree(fortheaboveexample)isgivenbelow-

Algorithm Huffman (c)

{

n=|c|

Q = c

fori<-1to n-1

do

{

temp<-getnode()

left(temp]Get_min(Q)right[temp]GetMin(Q) a =

left [templ b = right [temp]

F[temp]<-f[a]+[b]

insert (Q, temp)

}

returnGet_min (0)

}

UNIT4

Backtracking

NqueenProblem

N-Queensproblemistoplacen-queensinsuchamanneronannxn chessboardthatnoqueensattack each other by

being in the same row, column or diagonal.

Itcanbe seenthatforn=1,theproblemhasatrivialsolution,andnosolutionexistsforn=2andn=3.So first we will

consider the 4 queens problem and then generate it to n - queens problem.

Givena4x4chessboardandnumbertherowsandcolumnofthechessboard1through4.

Since, we have to place 4 queens such as q1q2q3and q4on the chessboard, such that no two queens attack

eachother.Insuch aconditionaleachqueenmustbe placedona different row,i.e.,weput queen"i"onrow "i."

Now, we place queen q1 in the very first acceptable position (1, 1). Next, we put queen q2 so that both these

queens do not attack each other. We find that if we place q2 in column 1 and 2, then the dead end is

encountered. Thus the first acceptable position for q2 in column 3, i.e. (2, 3) but then no position is left for

placing queen 'q3' safely. So we backtrack one step and place the queen 'q2' in (2, 4), the next best possible

solution. Then we obtain the position for placing 'q3' which is (3, 2). But later this position also leads to adead

end, and no place is found where 'q4' can be placed safely. Then we have to backtrack till 'q1' and place it to

(1, 2) and then all other queens are placed safely by moving q2 to (2, 4), q3 to (3, 1) and q4 to (4, 3). That is,

we get the solution (2, 4, 1, 3). This is one possible solution for the 4-queens problem. For anotherpossible

solution, the whole method is repeated for all partial solutions. The other solutions for 4 - queens problems

is (3, 1, 4, 2) i.e.

Theimplicittreefor4-queenproblemforasolution(2,4,1,3)isasfollows:

Figshowsthecompletestatespacefor4-queensproblem.But wecanusebacktrackingmethodtogenerate the

necessary node and stop if the next node violates the rule, i.e., if two queens are attacking.

4-Queenssolutionspacewithnodesnumberedin DFS

Itcanbe seenthatallthe solutionstothe4queensproblemcanbe representedas4-tuples(x1,x2,x3,x4) where xi

represents the column on which queen "qi" is placed.

Onepossiblesolutionfor8queensproblemisshowninfig:

1. Thus,thesolutionfor8-queenproblemfor(4,6,8,2,7,1,3,5).

2. Iftwoqueensare placedatposition(i,j)and(k,l).

3. Thentheyareonsamediagonalonlyif(i-j)= k-lori+ j=k +l.

4. Thefirstequationimpliesthatj-l=i-k.

5. Thesecondequationimpliesthatj-l=k-i.

6. Therefore,twoqueenslieontheduplicatediagonalifandonlyif|j-l|=|i-k|

Place (k, i) returns a Boolean value that is true if the kth queen can be placed in column i. It tests both

whether i is distinct from all previous costs x1, x2, ... xk-1andwhetherthereisnootherqueenonthesame
diagonal.

Usingplace,wegiveaprecisesolutiontothenn-queens problem.

1. Place(k, i)

2. { DownloadedfromEnggTree.com

3. Forj←1tok- 1

4. doif(x[j]=i)

5. or(Absx[j]) -i)=(Abs(j- k))

6. thenreturnfalse;

7. returntrue;

8.}

Place(k,i)returntrueifaqueencanbe placedinthekthrowandithcolumnotherwisereturnisfalse. x [] is a

global array whose final k - 1 values have been set. Abs (r) returns the absolute value of r.

1. N-Queens(k,n)

2. {

3. Fori←1ton

4. doifPlace(k,i)then

5. {

6. x[k]←i;

7. if(k==n)then

8. write(x[1 n));

9. else

10. N- Queens(k+1, n);

11. }

12.}

HamiltonianCircuit

TheHamiltoniancycleisthecycleinthegraphwhichvisitsalltheverticesingraphexactlyonceand terminates at the

starting node. It may not include all the edges

 TheHamiltoniancycleproblemistheproblemoffinding aHamiltoniancycleinagraphifthereexists any

such cycle.

 The input to the problem is an undirected, connected graph. For the graph shown in Figure (a), a

pathA–B– E– D–C–AformsaHamiltoniancycle.Itvisitsall theverticesexactlyonce,but does not visit

the edges <B, D>.

 TheHamiltoniancycleproblemisalsoboth,decisionproblemandanoptimizationproblem.A

decision problem is stated as, “Given a path, is it a Hamiltonian cycle of the graph?”.

 Theoptimizationproblemisstatedas,“GivengraphG,findtheHamiltoniancycleforthegraph.”

 WecandefinetheconstraintfortheHamiltoniancycleproblemas follows:

 Inanypath,verte
D

x
o
ia
w
n
n
d
l
(
o
i +
a

1
d
)
e
m
d
us

f
t
r
b
o

e
m

ad
E
jac

n
e
g
nt
g
.
Tree.com

EnggTree.com

 1stand(n–1)thvertexmustbeadjacent(nthofcycleistheinitialvertexitself).

 Verteximustnotappearinthefirst(i– 1)verticesofany path.

 Withtheadjacencymatrixrepresentationofthegraph,theadjacencyoftwoverticescanbeverified in

constant time.

Algorithm

HAMILTONIAN(i)

//Description:SolveHamiltoniancycleproblemusingbacktracking.

//Input:Undirected,connectedgraphG=<V,E>andinitialvertexi

//Output:Hamiltoniancycle

if

FEASIBLE(i)

then

if

(i==n-1)

then

PrintV[0…n– 1]

else

j ←2

while

(j ≤ n)

do

V[i] ← j

HAMILTONIAN(i+1)

j←j+1 end

end

end

function

FEASIBLE(i)

flag←1

for

j ←1toi –1

do

if

Adjacent(Vi,Vj)

then

flag←0

end

end

if

Adjacent(Vi,Vi-1)

then

flag←1

else

DownloadedfromEnggTree.com

EnggTree.com

DownloadedfromEnggTree.com

flag←0

end

return

flag

ComplexityAnalysis

Lookingatthe statespacegraph,inworstcase,totalnumberofnodesintreewouldbe, T(n) = 1 +

(n – 1) + (n – 1)2 + (n – 1)3 + … + (n – 1)n–1

=frac(n−1)n–1n–2

T(n)=O(nn).Thus,theHamiltoniancyclealgorithmrunsinexponentialtime.

Example:FindtheHamiltoniancyclebyusingthebacktrackingapproachforagivengraph.

The backtracking approach uses a state-space tree to check if there exists a Hamiltonian cycle in the graph.

Figure (g) shows the simulation of the Hamiltonian cycle algorithm. For simplicity, we have not explored all

possible paths, the concept is self-explanatory. It is not possibleto include all the paths in the graph, so few

ofthesuccessfulandunsuccessfulpathsaretracedinthe graph.BlacknodesindicatetheHamiltoniancycle.

SubsetSum Problem

EnggTree.com

DownloadedfromEnggTree.com

SumofSubsetsProblem:Givenasetofpositiveintegers,findthe combinationofnumbersthatsumtogiven value M.

Sumofsubsetsproblemisanalogoustotheknapsackproblem.TheKnapsackProblemtriestofillthe knapsack

using a given set of items to maximize the profit. Items are selected in such a way that the total weight in

the knapsack does not exceed the capacity of the knapsack. The inequality condition in the knapsack

problem is replaced by equality in the sum of subsets problem.

Given the set of n positive integers, W = {w1, w2, …, wn}, and given a positive integer M, the sum of the

subsetproblemcanbeformulatedasfollows(wherewiandMcorrespondtoitemweightsandknapsack capacity in

the knapsack problem):

Where,

Numbers are sorted in ascending order, such that w1< w2< w3< …. < wn. The solution is often represented

using the solution vector X. If the ithitemis included, set xito 1 else set it to 0. Ineach iteration, oneitem is

tested.Iftheinclusionofanitemdoesnotvioletthe constraintoftheproblem,addit.Otherwise,backtrack,

removethepreviouslyaddeditem,andcontinuethe sameprocedurefor allremainingitems.Thesolutionis easily

described by the state space tree. Each left edge denotes the inclusion of wi and the right edge denotes the

exclusionof wi. Any path fromthe root to the leaf forms asubset. Astate-space tree for n = 3 is demonstrated

in Fig. (a).

Fig.(a):Statespacetreeforn= 3

AlgorithmforSumofsubsets

Thealgorithmforsolvingthesumofsubsetsproblemusingrecursionisstatedbelow:

https://codecrucks.com/binary-knapsack-problem-using-greedy-algorithm/

EnggTree.com

DownloadedfromEnggTree.com

Examples

EnggTree.com

GraphColouring

In this problem,an undirected graphis given.Thereis alsoprovided m colors.Theproblem isto find if itis

possibletoassignnodeswithmdifferentcolors,suchthatnotwoadjacentverticesofthegraphare ofthe same

colors. If the solution exists, then display which color is assigned on which vertex.

Starting from vertex0, wewill try to assign colors one by one to different nodes. But before assigning, we

havetocheckwhetherthecolorissafeornot.Acolorisnotsafewhetheradjacentverticesare containing the same

color.

InputandOutput Input:

TheadjacencymatrixofagraphG(V,E)andanintegerm,whichindicatesthemaximumnumberofcolors that can be

used.

Letthemaximumcolorm=3.

Output:

Thisalgorithmwillreturnwhichnodewillbe assignedwithwhichcolor.Ifthesolutionisnotpossible,it will return false.

Forthisinputtheassignedcolors are:
Node0-> color1

Node1-> color2

Node2-> color3

Node3-> color2

Algorithm

isValid(vertex,colorList,col)

Input−Vertex,colorListtocheck,andcolor,whichistryingtoassign.

Output−Trueifthecolorassigningisvalid,otherwisefalse.

Begin

forallverticesvofthegraph,do

ifthereisanedgebetweenvandi,andcol=colorList[i],then return false

done

returntrue

End DownloadedfromEnggTree.com

EnggTree.com

DownloadedfromEnggTree.com

graphColoring(colors,colorList,vertex)

Input−Mostpossiblecolors,thelistforwhichverticesarecoloredwithwhichcolor,andthestartingvertex.

Output−True,whencolorsareassigned,otherwisefalse.

Begin

ifallverticesarechecked,then

return true

forallcolorscolfromavailablecolors,do if

isValid(vertex, color, col), then

addcoltothecolorListfor vertex

ifgraphColoring(colors,colorList,vertex+1)=true,then return

true

removecolorforvertex done

returnfalse

End

BranchandBound
Solving15puzzleProblem(LCBB)
The problem cinsist of 15numbered (0-15) tiles ona square box with16 tiles(one tile is blank or empty).

Theobjective ofthisproblemistochange thearrangementofinitialnodetogoalnodebyusing seriesof legal

moves.

TheInitialandGoalnodearrangementisshownbyfollowingfigure.

EnggTree.com

DownloadedfromEnggTree.com

InitialArrangement FinalArrangement

Ininitial nodefourmovesarepossible.Usercanmoveanyoneofthetilelike2,or 3,or5,or6totheempty tile. From

this we have four possibilities to move from initial node.

Thelegalmovesareforadjacenttilenumberisleft,right,up,down,onesatatime.

Each and every move creates a new arrangement, and this arrangement is called state of puzzle problem.

Byusingdifferentstates,astatespacetreediagramiscreated,inwhichedgesarelabeledaccordingtothe direction

in which the empty space moves.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 4 15

2 5 12

7 6 11 14

8 9 10 13

EnggTree.com

DownloadedfromEnggTree.com

Thestatespacetreeisverylargebecauseitcanbe16!Differentarrangements.

Instatespacetree,nodesarenumberedasperthe level.Ineachlevelwemustcalculatethevalue or cost of

each node by using given formula:

C(x)=f(x)+g(x),

f(x)islengthofpathfromrootorinitialnodetonodex,

g(x)isestimatedlengthofpathfromxdownwardtothegoalnode.Numberofnonblank tilenotin their

correct position.

C(x)<Infinity.(initiallysetbound).

Eachtimenodewithsmallestcost isselectedforfurtherexpansiontowardsgoalnode.Thisnode become

the e-node.

StateSpacetreewithnodecostisshownin diagram.

AssignmentProblem
ProblemStatement

Let’sfirstdefine ajobassignment problem.Inastandardversionofajobassignment problem,there canbe

 jobsand workers.Tokeepitsimple,we’retaking jobs and workersinourexample:

EnggTree.com

DownloadedfromEnggTree.com

Wecanassignanyofthe availablejobstoanyworkerwiththeconditionthatifajobisassignedtoa worker,

the other workers can’t take that particular job. We should also notice that each job has some cost

associated with it, and it differs from one worker to another.

Herethemainaimistocomplete allthejobsby assigningonejobtoeachworkerinsuchawaythat the sum

of the cost of all the jobs should be minimized.

BranchandBoundAlgorithmPseudocode

Nowlet’sdiscusshowtosolvethejobassignmentproblemusingabranchandboundalgorithm. Let’s see

the pseudocode first:

Here,is the input cost matrix that contains information like the number ofavailable jobs, a list of

available workers, and the associated cost for each job. The function MinCost() maintains a list of

active nodes. The function Leastcost()calculates the minimum cost of the active node at each level of

the tree. After finding the node with minimum cost, we remove the node from the list of active

nodes and return it.

We’re using the add() function in the pseudocode, which calculates the cost of a particular node and

adds it to the list of active nodes.

In the search space tree, each node contains some information, such as cost, a total number of jobs,

as well as a total number of workers.

Nowlet’srunthealgorithmonthesampleexamplewe’vecreated:

EnggTree.com

DownloadedfromEnggTree.com

Advantages

Inabranchandboundalgorithm,wedon’t exploreallthe nodesinthetree.That’swhythetime complexity

of the branch and bound algorithm is less when compared with other algorithms.

Iftheproblemisnotlargeandifwecandothebranching inareasonableamount oftime,itfindsan optimal

solution for a given problem.

Thebranchandboundalgorithmfindaminimalpathtoreachtheoptimalsolutionforagiven problem. It

doesn’t repeat nodes while exploring the tree.

Disadvantages

Thebranchandbound algorithmaretime-consuming.Dependingonthe sizeofthegivenproblem, the

number of nodes in the tree can be too large in the worst case.

KnapsackProblemusingbranchandbound
ProblemStatement

Weare a givenasetofnobjectswhichhaveeachhavea valuevianda weightwi. Theobjectiveof

the0/1Knapsackproblemistofindasubsetofobjectssuchthatthetotalvalueismaximized,and

thesumofweightsoftheobjectsdoesnotexceedagiventhresholdW.Animportant conditionhere is that

one can either take the entire object or leave it. It is not possible to take a fraction of the object.

EnggTree.com

DownloadedfromEnggTree.com

Consideranexamplewheren=4,andthevaluesaregivenby {10,12,12, 18}andtheweightsgiven by {2, 4,

6, 9}. The maximum weight is given by W = 15. Here, the solution to the problem will be including

the first, third and the fourth objects.

Here,theproceduretosolvetheproblemisasfollows are:

 Calculatethe costfunctionandtheUpperboundforthetwochildrenofeachnode.Here, the (i +

1)th level indicates whether the ith object is to be included or not.

 If the cost function for a given node is greater than the upper bound, then the node neednot

be explored further. Hence, we can kill this node. Otherwise, calculate the upper bound

forthisnode.IfthisvalueislessthanU,thenreplacethe valueofUwiththisvalue.Then,kill all

unexplored nodes which have cost function greater than this value.

 Thenextnodetobecheckedafterreachingallnodesinaparticularlevelwillbe theonewith the least

cost function value among the unexplored nodes.

 Whileincludinganobject,oneneedstocheckwhethertheadding theobjectcrossedthe

threshold. If it does, one has reached the terminal point in that branch, and all the

succeeding objects will not be included.

TimeandSpaceComplexity

Even though this method is more efficient than the other solutions to this problem, its worst case

timecomplexityisstillgivenbyO(2n),incaseswheretheentiretreehastobeexplored.However,in its best

case, only one path through the tree will have to explored, and hence its best case time complexity

isgivenby O(n).Sincethis method requiresthecreationofthestatespacetree, itsspace complexity will

also be exponential.

SolvinganExample

Considerthe problemwithn=4, V ={10,10,12, 18}, w={2,4,6,9}andW= 15.Here,wecalculate the initital

upper bound to be U = 10 + 10 + 12 = 32. Note that the 4th object cannot be included here, since

that would exceed W. For the cost, we add 3/9 th of the final value, and hence the cost function is

38. Remember to negate the values after calculation before comparison.

Aftercalculatingthecost ateachnode,killnodesthat donotneedexploring.Hence,thefinalstate space

tree will be as follows (Here, the number of the node denotes the order in which the state space

tree was explored):

EnggTree.com

DownloadedfromEnggTree.com

Note here that node 3 and node 5 have been killed after updating U at node 7. Also, node 6 is not

explored further, since adding any more weight exceeds the threshold. At the end, only nodes 6 and

8remain. SincethevalueofU islessfor node8,weselect thisnode.Hencethesolutionis{1,1,0,1}, and we

can see here that the total weight is exactly equal to the threshold value in this case.

Travellingsalesmanproblem
 TravellingSalesmanProblem(TSP)isaninterestingproblem.Problemisdefinedas“givenn cities

and distance between each pair of cities, find out the path which visits each city

exactlyonceandcomebacktostartingcity, withtheconstraintofminimizing thetravelling

distance.”

 TSPhasmanypracticalapplications.Itisusedinnetworkdesign,andtransportationroute

design. The objective is to minimize the distance. We can start tour fromany randomcity

and visit other cities in any order. With n cities, n! different permutations are possible.

Exploring all paths using brute force attacks may not be useful in real life applications.

LCBBusingStaticStateSpaceTreeforTravellingSalsemanProblem

 Branchand boundisaneffectivewaytofindbetter,ifnotbest,solutioninquicktime by pruning

some of the unnecessary branches of search tree.

 Itworksasfollow:

ConsiderdirectedweightedgraphG=(V,E,W),wherenode representscitiesand weighted directed

edges represents direction and distance between two cities.

1. Initially,graphisrepresentedbycostmatrixC,where

Cij=cost ofedge,ifthereisadirectpathfromcityitocityj Cij=∞, if

there is no direct path from city i to city j.
2. Convertcostmatrixtoreducedmatrixbysubtractingminimumvaluesfromappropriaterows and

columns, such that each row and column contains at least one zero entry.

https://codecrucks.com/branch-and-bound-the-dummies-guide/

EnggTree.com

DownloadedfromEnggTree.com

3. Findcostofreducedmatrix.Costisgivenby summationofsubtractedamountfromthecost matrix

to convert it in to reduce matrix.

4. Preparestatespacetreeforthereducematrix

5. FindleastcostvaluednodeA(i.e.E-node),bycomputingreducedcostnodematrix withevery

remaining node.

6. If<i,j>edgeistobeincluded,thendofollowing:

(a) SetallvaluesinrowiandallvaluesincolumnjofAto∞

(b) SetA[j,1]= ∞

(c) ReduceAagain,exceptrowsandcolumnshavingall∞entries.

7. Computethecostofnewlycreatedreducedmatrixas,

Cost=L + Cost(i, j) + r

Where,LiscostoforiginalreducedcostmatrixandrisA[i,j].

8. Ifallnodesarenotvisitedthengotostep4.

Reduction procedure is described below :

RawReduction:

MatrixMis calledreducedmatrixif eachof itsrowandcolumnhasatleastonezeroentryorentire row or

entire column has ∞ value. Let M represents the distance matrix of 5 cities. M can be reduced as

follow:

MRowRed={Mij– min{Mij|1≤ j≤n,and Mij< ∞}}

Consider the following distance matrix:

Findtheminimumelementfromeachrowand subtractitfromeachcellof matrix.

Reducedmatrixwouldbe:

Rowreductioncostisthesummationofallthevaluessubtractedfromeachrows: Row

reduction cost (M) = 10 + 2 + 2 + 3 + 4 = 21

Columnreduction:

MatrixMRowRedisrowreducedbut notthecolumnreduced.Matrixiscalledcolumnreducedifeach of its

column has at least one zero entry or all ∞ entries.

EnggTree.com

DownloadedfromEnggTree.com

MColRed={Mji–min{Mji|1≤j≤n, andMji<∞ }}

Toreducedabovematrix,wewillfindtheminimumelementfromeachcolumnand subtractit from each

cell of matrix.

ColumnreducedmatrixMColRedwouldbe:

Eachrowand columnofMColRed hasatleastonezeroentry,sothismatrixisreducedmatrix. Column

reduction cost (M) = 1 + 0 + 3 + 0 + 0 = 4

Statespacetreefor5cityproblemisdepictedinFig.6.6.1.Numberwithincircleindicatestheorder in which

the node is generated, and number of edge indicates the city being visited.

Example

Example:Findthesolutionoffollowingtravellingsalesmanproblemusingbranchandbound method.

EnggTree.com

Solution:

 Theprocedurefordynamicreductionisasfollow:

 Drawstatespacetreewithoptimalreductioncostatrootnode.

 Derivecost ofpathfromnodeitojbysettingallentriesinithrowandjthcolumnas∞. Set M[j][i]

= ∞

 Costofcorresponding nodeNforpathitojissummationofoptimalcost +reductioncost+ M[j][i]

 Afterexploringall nodesat leveli,setnodewithminimumcost asEnodeandrepeatthe

procedure until all nodes are visited.

 Givenmatrixisnotreduced. Inordertofindreducedmatrix of it,wewillfirstfindtherow

reduced matrix followed by column reduced matrix if needed. We can find row reduced

matrixbysubtractingminimum elementofeachrowfromeachelementofcorresponding row.

Procedure is described below:

 Reduceabovecostmatrixbysubtractingminimumvaluefromeachrowandcolumn.

M‘1

isnotreducedmatrix.Reduceitsubtractingminimumvaluefromcorrespondingcolumn.Doingthis we

get,

DownloadedfromEnggTree.com

EnggTree.com

CostofM1=C(1)

=Rowreductioncost+Columnreductioncost

=(10+2+2+3+4)+(1+3)=25

Thismeansalltoursingraphhaslengthatleast25.Thisistheoptimalcostofthepath.

Statespacetree

Letusfindcostofedge fromnode1to2,3,4,5.

Selectedge1-2:

SetM1[1][]=M1[][2]=∞ Set

M1[2] [1] = ∞
Reducetheresultantmatrixifrequired.

M2isalreadyreduced.

Cost of node 2 :

C(2)=C(1)+Reductioncost +M1[1][2]

=25+0+10=35

Selectedge1-3

SetM1[1][]=M1[][3]=∞ Set M1

[3][1] = ∞

Reducetheresultantmatrixifrequired.

Costofnode3:

C(3)=C(1)+Reductioncost +M1[1][3]

=25+11+17=53

DownloadedfromEnggTree.com

EnggTree.com

Selectedge1-4:

SetM1[1][]=M1[][4]=∞ Set

M1 [4][1] = ∞

Reduceresultantmatrixifrequired.

MatrixM4isalreadyreduced. Cost

of node 4:

C(4)=C(1)+Reductioncost +M1[1][4]

=25+0+0=25

Selectedge1-5:

SetM1[1][]=M1[][5]=∞ Set

M1 [5] [1] = ∞

Reducetheresultantmatrixifrequired.

Costofnode5:

C(5)=C(1)+reductioncost +M1[1][5]

=25+5+1=31

Statespacediagram:

Node4hasminimumcost forpath1-4.Wecangotovertex2,3 or5.Let’sexploreallthreenodes.

Selectpath1-4-2:(Addedge4-2)

SetM4[1][]=M4[4][]=M4[] [2]=∞ Set M4 [2]

[1]=∞

Reduceresultantmatrixifrequired.

DownloadedfromEnggTree.com

EnggTree.com

MatrixM6isalreadyreduced.

Cost of node 6:

C(6)=C(4)+Reductioncost +M4[4][2]

=25+0+3=28

Selectedge4-3(Path1-4-3):

SetM4[1][]=M4[4][]= M4[][3]=∞ Set M

[3][1]=∞

Reducetheresultantmatrixifrequired.

M‘7

isnotreduced.Reduceitbysubtracting11fromcolumn1.

Costofnode7:

C(7)=C(4)+Reductioncost +M4[4][3]

=25+2+11+12=50

Selectedge4-5(Path1-4-5):

MatrixM8isreduced. Cost

of node 8:

C(8)=C(4)+Reductioncost +M4[4][5]

=25+11+0=36

Statespacetree

DownloadedfromEnggTree.com

EnggTree.com

Path1-4-2leadstominimumcost.Let’sfindthecostfortwopossiblepaths.

Addedge2-3(Path1-4-2-3):

SetM6 [1][]=M6 [4][] =M6[2][]

=M6 [][3]=∞

SetM6[3][1]=∞

Reduceresultantmatrixifrequired.

Costofnode9:

C(9)=C(6)+Reductioncost +M6[2][3]

=28+11+2+11=52

Addedge2-5(Path1-4-2-5):

SetM6[1][]= M6[4][]=M6[2][]=M6[][5]=∞ Set M6

[5][1] = ∞

Reduceresultantmatrixifrequired.

DownloadedfromEnggTree.com

Costofnode10:

C(10)=C(6)+Reductioncost+M6[2][5]

=28+0+0=28

Statespacetree

Addedge5-3(Path1-4-2-5-3):

Costofnode11:

C(11)=C(10)+Reductioncost+M10[5][3]
=28+0+0=28

Statespacetree:

Sowecanselectany oftheedge.Thusthefinalpathincludestheedges<3,1>,<5,3>,<1,4>,<4,2>,

<2,5>,thatformsthe path1– 4–2 –5– 3–1.Thispathhascost of28.

UNIT5

TractableandIntractableProblems

Tractableproblemsrefertocomputationalproblemsthatcanbesolvedefficientlyusingalgorithms that

can scale with the input size of the problem. In other words, the time required to solve a tractable

problem increases at most polynomially with the input size.

Onthe otherhand,intractableproblemsarecomputationalproblemsforwhichnoknownalgorithm can

solve them efficiently in the worst-case scenario. This means that the time required to solve an

intractable problem grows exponentially or even faster with the input size.

Oneexampleofa tractableproblemis computingthesumofa list of nnumbers.The timerequired to

solve this problem scales linearly with the input size, as each number can be added to a running

total in constant time. Another example is computing the shortest path between two nodes in a

graph,whichcanbesolvedefficientlyusingalgorithmslikeDijkstra'salgorithmortheA*algorithm.

In contrast, some well-known intractable problems include the traveling salesman problem, the

knapsack problem, and the Boolean satisfiability problem. These problems are NP-hard, meaning

that any problem in NP (the set of problems that can be solved in polynomial time using a non-

deterministicTuringmachine)canbe reducedtotheminpolynomial time.Whileit ispossibletofind

approximatesolutionstotheseproblems,thereisnoknownalgorithmthatcansolvethemexactlyin

polynomial time.

In summary, tractable problems are those that can be solved efficiently with algorithms that scale

wellwiththeinput size,whileintractableproblemsarethosethatcannotbesolvedefficiently inthe worst-

case scenario.

ExamplesofTractableproblems

1. Sorting:Givenalistofnitems,thetaskistosorttheminascendingordescending order.

Algorithms like QuickSort and MergeSort can solve this problem in O(n log n) time

complexity.

2. Matrixmultiplication:GiventwomatricesAandB,thetaskistofindtheirproductC=AB. The

best-known algorithm for matrix multiplication runs in O(n^2.37) time complexity, which

is considered tractable for practical applications.

3. Shortest path in a graph: Given a graph G and two nodes s and t, the task is to find the

shortestpathbetweensandt.AlgorithmslikeDijkstra'salgorithmandtheA* algorithmcan

solvethisprobleminO(m+nlogn) timecomplexity,wheremis thenumberofedgesand n is the

number of nodes in the graph.

4. Linearprogramming:Givenasystemoflinearconstraintsandalinearobjectivefunction,the task is

to find the values of the variables that optimize the objective function subject to the

constraints. Algorithms like the simplex method can solve this problem in polynomial time.

5. Graph coloring: Given an undirected graph G, the task is to assign a color to each node such

thatno two adjacentnodeshavethesame color,using asfewcolorsas possible.The greedy

algorithmcansolvethisprobleminO(n^2)time complexity,wherenisthenumberofnodes in the

graph.

Theseproblemsare consideredtractablebecausealgorithmsexistthatcansolvetheminpolynomial time

complexity, which means that the time required to solve them grows no faster than a polynomial

function of the input size.

Examplesofintractableproblems

1. Travelingsalesmanproblem(TSP):Givenasetofcitiesandthedistancesbetweenthem,the taskis

tofindtheshortestpossibleroutethatvisitseachcityexactlyonceandreturns tothe starting city.

The best-known algorithms for solving the TSP have an exponential worst-case time

complexity, which makes it intractable for large instances of the problem.

2. Knapsack problem:Given a setof items with weights and values, and a knapsackthat can

carry amaximumweight,the taskis to find themostvaluable subsetofitemsthatcan be

carriedbytheknapsack.TheknapsackproblemisalsoNP-hardand isintractableforlarge

instances of the problem.

3. Boolean satisfiability problem (SAT): Given a boolean formula in conjunctive normal form

(CNF),thetaskis todetermineif thereexistsanassignment oftruthvaluestothe variables

thatmakestheformulatrue.TheSATproblemisoneofthemostwell-knownNP-complete

problems, which means that any NP problem can be reduced to SAT in polynomial time.

4. Subsetsumproblem:Givenasetofintegersandatargetsum,thetaskistofindasubsetof the

integers that sums up to the target sum. Like the knapsack problem, the subset sum

problem is also intractable for large instances of the problem.

5. Graphisomorphismproblem:GiventwographsG1andG2,thetaskistodetermineifthere

1. Linearsearch:Givenalistofnitems,thetaskistofindaspecificiteminthe list.Thetime

complexity of linear search is O(n), which is a polynomial function of the input size.

2. Bubble sort:Givenalistofnitems,thetaskistosorttheminascendingordescendingorder. The time

complexity of bubble sort is O(n^2), which is also a polynomial function of theinput size.

3. Shortest path in a graph: Given a graph G and two nodes s and t, the task is to find the

shortestpathbetweensandt.AlgorithmslikeDijkstra'salgorithmandtheA* algorithmcan solve

this problem in O(m + n log n) time complexity, which is a polynomial function of the input

size.

4. Maximum flow in a network: Given a network with a source node and a sink node, and

capacities on the edges, the task is to find the maximum flow from the source to the sink.

The Ford-Fulkerson algorithm can solve this problem in O(mf), where m is the number of

edgesinthenetworkandfisthemaximumflow,whichisalsoapolynomialfunctionofthe input

size.

5. Linearprogramming:Givenasystemoflinearconstraintsandalinearobjectivefunction,the task is

to find the values of the variables that optimize the objective function subject to the

constraints. Algorithms like the simplex method can solve this problem in polynomial time.

P(Polynomial)problems

P problems refer to problemswhere an algorithmwould take a polynomial amount of time

tosolve,orwhereBig-Oisapolynomial(i.e.O(1),O(n),O(n²),etc).Theseare problemsthat would

be considered ‘easy’ to solve, and thus do not generally have immense run times.

NP(Non-deterministicPolynomial)Problems

NPproblemswerealittleharderformetounderstand,but Ithinkthisiswhattheyare.In terms of

solving a NP problem, the run-time would not be polynomial. It would be something like

O(n!) or something much larger.

NP-HardProblems

A problem is classified as NP-Hard when an algorithm for solving it can be translated to

solveanyNPproblem.Thenwecansay,thisproblemisat leastashardasanyNPproblem, but it

could be much harder or more complex.

NP-CompleteProblems

NP-CompleteproblemsareproblemsthatliveinboththeNPandNP-Hardclasses.This means

that NP-Completeproblems can be verified in polynomial time and that any NP

problem can be reduced to this problem in polynomial time.

BinPackingproblem

BinPackingprobleminvolvesassigningnitemsofdifferentweightsandbinseachofcapacity c to a

bin such that number of total used bins is minimized. It may be assumed that all items have

weights smaller than bin capacity.

Thefollowing4 algorithmsdependonthe orderoftheirinputs.Theypackthe itemgiven first and

then move on to the next input or next item

1) NextFitalgorithm

The simplest approximate approach to the bin packing problem is the Next-Fit (NF)

algorithm which is explained later in this article. The first item is assigned to bin 1. Items

2,...,narethenconsideredbyincreasingindices:eachitemisassignedtothe currentbin,if it fits;

otherwise, it is assigned to a new bin, which becomes the current one.

VisualRepresentation

Letusconsiderthesameexampleasusedaboveandbinsofsize1

Assumingthesizesoftheitemsbe{0.5,0.7,0.5,0.2,0.4,0.2,0.5,0.1, 0.6}.

TheminimumnumberofbinsrequiredwouldbeCeil((TotalWeight)/(BinCapacity))= Celi(3.7/1)

= 4 bins.

The Next fit solution (NF(I))for this instance I would be-

Considering0.5sizeditemfirst,wecanplaceitinthefirstbin

Movingontothe0.7sizeditem,wecannotplaceit inthefirstbin.Hence weplace itina new bin.

Movingontothe0.5sizeditem,wecannotplaceit inthecurrentbin.Henceweplaceit ina new bin.

Movingontothe0.2sizeditem,wecanplaceitinthecurrent(third bin)

Similarly,placingalltheotheritemsfollowingtheNext-Fitalgorithmweget-

Thusweneed6 binsasopposedtothe4 binsofthe optimalsolution.Thuswecanseethat this

algorithm is not very efficient.

AnalyzingtheapproximationratioofNext-Fitalgorithm

ThetimecomplexityofthealgorithmisclearlyO(n).Itiseasytoprove that,foranyinstance I of

BPP,the solution value NF(I) provided by the algorithm satisfies the bound

NF(I)<2z(I)

wherez(I)denotestheoptimalsolutionvalue.Furthermore,thereexistinstancesforwhich the

ratio NF(I)/z(I) is arbitrarily close to 2, i.e. the worst-case approximation ratio of NF is r(NF)

= 2.

Psuedocode

NEXTFIT(size[],n,c)

size[]isthearraycontaingthesizesofthe items,nisthenumberofitemsandcisthe capacity of the

bin

{

Initializeresult(Countofbins)andremainingcapacityincurrentbin. res = 0

bin_rem=c

Placeitemsonebyone

for(inti=0;i <n;i++){

//Ifthisitemcan'tfitincurrentbin if

(size[i] > bin_rem) {

Useanewbin

res++

bin_rem=c-size[i]

}

else

bin_rem-=size[i];

}

returnres;

}

2) FirstFitalgorithm

A better algorithm, First-Fit (FF), considers the items according to increasing

indicesandassignseachitemtothelowestindexedinitializedbinintowhichit fits; only

when the current item cannot fit into any initialized bin, is a new bin introduced

VisualRepresentation

Letusconsiderthesameexampleasusedaboveandbinsofsize1

Assumingthesizesoftheitemsbe{0.5,0.7,0.5,0.2,0.4,0.2,0.5,0.1, 0.6}.

TheminimumnumberofbinsrequiredwouldbeCeil((TotalWeight)/(BinCapacity))= Celi(3.7/1)

= 4 bins.

The First fit solution (FF(I))for this instance I would be-

Considering0.5sizeditemfirst,wecanplaceitinthefirstbin

Movingontothe0.7sizeditem,wecannotplaceit inthefirstbin.Hence weplace itina new bin.

Movingontothe0.5sizeditem,wecanplaceitinthefirstbin.

Movingontothe0.2sizeditem, wecanplaceit inthefirstbin, wecheckwiththesecondbin and we

can place it there.

Movingontothe0.4sizeditem,wecannotplaceit inanyexistingbin. Henceweplaceit ina new bin.

Similarly,placingalltheotheritemsfollowingtheFirst-Fitalgorithmweget-

Thusweneed5 binsasopposedtothe4 binsofthe optimalsolutionbut ismuchmore efficient

than Next-Fit algorithm.

AnalyzingtheapproximationratioofNext-Fitalgorithm

IfFF(I)istheFirst-fitimplementationforIinstanceandz(I)isthemostoptimalsolution,then:

Itcanbeseenthatthe FirstFitneverusesmorethan1.7*z(I)bins. SoFirst-Fitisbetterthan Next Fit

in terms of upper bound on number of bins.

Psuedocode

FIRSTFIT(size[],n, c)

{

size[]isthearraycontaingthesizesofthe items,nisthenumberofitemsandcisthe capacity of the

bin

/Initializeresult(Countofbins)

res=0;

Createanarraytostoreremainingspaceinbinstherecanbeatmostnbins bin_rem[n];

Plae items one by one

for(inti=0;i<n;i++){

Findthefirstbinthatcanaccommodateweight[i] int j;

for(j=0;j <res;j++){

if (bin_rem[j] >= size[i]) {

bin_rem[j]=bin_rem[j]-size[i];

break;

}

}

Ifnobincouldaccommodatesize[i] if

(j == res) {

bin_rem[res]=c-size[i];

res++;

}

}

returnres;

}

3) BestFitAlgorithm

The next algorithm, Best-Fit (BF), is obtained from FF by assigning the current

itemtothefeasiblebin(ifany)havingthesmallestresidualcapacity(breaking ties in

favor of the lowest indexed bin).

Simplyput,theideaistoplacesthenextiteminthetightestspot.Thatis,put itinthe binso that the

smallest empty space is left.

VisualRepresentation

Letusconsiderthesameexampleasusedaboveandbinsofsize1

Assumingthesizesoftheitemsbe{0.5,0.7,0.5,0.2,0.4,0.2,0.5,0.1, 0.6}.

TheminimumnumberofbinsrequiredwouldbeCeil((TotalWeight)/(BinCapacity))= Celi(3.7/1)

= 4 bins.

TheFirstfitsolution(FF(I))forthisinstanceIwouldbe-

Considering0.5sizeditemfirst,wecanplaceitinthefirstbin

Movingontothe0.7sizeditem,wecannotplaceit inthefirstbin.Hence weplace itina new bin.

Movingontothe0.5sizeditem,wecanplaceitinthefirstbin tightly.

Movingontothe0.2sizeditem,wecannotplaceit inthefirstbin butwecanplace itin second bin

tightly.

Movingontothe0.4sizeditem,wecannotplaceit inanyexistingbin. Henceweplaceit ina new bin.

Similarly,placingalltheotheritemsfollowingtheFirst-Fitalgorithmweget-

Thusweneed5 binsasopposedtothe4 binsofthe optimalsolutionbut ismuchmore efficient

than Next-Fit algorithm.

AnalyzingtheapproximationratioofBest-Fitalgorithm

ItcanbenotedthatBest-Fit(BF),isobtainedfromFFbyassigningthecurrentitemtothe feasible

bin (if any) having the smallest residual capacity (breaking ties in favour of the lowest

indexed bin). BF satisfies the same worst-case bounds as FF

AnalysisOfupper-boundofBest-Fitalgorithm

Ifz(I)istheoptimalnumberofbins,thenBestFitneverusesmorethan2*z(I)-2bins. So Best Fit is

same as Next Fit in terms of upper bound on number of bins.

Psuedocode

BESTFIT(size[],n,c)

{

size[]isthearraycontaingthesizesofthe items,nisthenumberofitemsandcisthe capacity of the

bin

Initializeresult(Countofbins) res

= 0;

Createanarraytostoreremainingspaceinbinstherecanbeat mostnbins

bin_rem[n];

Placeitemsonebyone

for(inti=0;i <n;i++){

Findthebestbinthatcanaccommodateweight[i] int j;

Initializeminimumspaceleftandindexofbestbin int

min = c + 1, bi = 0;

for(j=0;j <res;j++){

if(bin_rem[j]>=size[i]&&bin_rem[j]-size[i]<min){ bi = j;

min=bin_rem[j]-size[i];

}

}

Ifnobincouldaccommodateweight[i],createanewbin if

(min == c + 1) {

bin_rem[res]=c-size[i];

res++;

}

else

Assigntheitemtobestbin

bin_rem[bi] -= size[i];

}

returnres;

}

Intheofflineversion,wehaveallitemsat ourdisposalsincethestartoftheexecution.The natural

solution is to sort the array fromlargest to smallest, and then apply the algorithms

discussed henceforth.

NOTE:Intheonlineprogramswehavegiventhe inputsupfront forsimplicitybut itcanalso work

interactively

Letuslookatthevariousofflinealgorithms

1) FirstFitDecreasing

Wefirst sortthe arrayofitemsindecreasingsizeby weight andapply first-fitalgorithmas

discussed above

Algorithm

 Readtheinputsofitems

 Sortthearrayofitemsindecreasingorderbytheirsizes

 ApplyFirst-Fitalgorithm

VisualRepresentation

Letusconsiderthesameexampleasusedaboveandbinsofsize1

Assumingthesizesoftheitemsbe{0.5,0.7,0.5,0.2,0.4,0.2,0.5,0.1, 0.6}.

Sortingthemweget{0.7,0.6,0.5,0.5,0.5,0.4,0.2,0.2,0.1}

TheFirstfitDecreasingsolutionwould be-

Wewillstartwith0.7andplaceitinthefirst bin

Wethenselect0.6sizeditem.Wecannotplaceitinbin1.So,weplaceitinbin2

Wethenselect0.5sizeditem.Wecannotplaceitinanyexisting.So,weplaceitinbin3

Wethenselect0.5sizeditem.Wecanplace itinbin3

Doingthesameforallitems,we get.

Thusonly4binsarerequiredwhichisthesameastheoptimalsolution.

2) BestFitDecreasing

WefirstsortthearrayofitemsindecreasingsizebyweightandapplyBest-fitalgorithmas discussed

above

Algorithm

 Readtheinputsofitems

 Sortthearrayofitemsindecreasingorderbytheirsizes

 ApplyNext-Fitalgorithm

VisualRepresentation

Letusconsiderthesameexampleasusedaboveandbinsofsize1

Assumingthesizesoftheitemsbe{0.5,0.7,0.5,0.2,0.4,0.2,0.5,0.1, 0.6}.

Sortingthemweget{0.7,0.6,0.5,0.5,0.5,0.4,0.2,0.2,0.1}

TheBestfitDecreasingsolutionwouldbe-

Wewillstartwith0.7andplaceitinthefirst bin

Wethenselect0.6sizeditem.Wecannotplaceitinbin1.So,weplaceitinbin2

Wethenselect0.5sizeditem.Wecannotplaceitinanyexisting.So,weplaceitinbin3

Wethenselect0.5sizeditem.Wecanplace itinbin3

Doingthesameforallitems,we get.

Thusonly4binsarerequiredwhichisthesameastheoptimalsolution.

ApproximationAlgorithmsfortheTravelingSalesmanProblem

WesolvedthetravelingsalesmanproblembyexhaustivesearchinSection3.4,mentioned its

decision version as one of the most well-known NP-complete problems in Section 11.3, and

saw how its instances canbe solved by a branch-and-bound algorithm in Section 12.2. Here,

we consider several approximation algorithms, a small sample of dozens of such algorithms

suggested over the years for this famous problem.

But first let us answer the question of whether we should hope to find a polynomial-time

approximation algorithm with a finite performance ratio on all instances of the traveling

salesmanproblem.Asthefollowingtheorem[Sah76]shows,the answerturnsouttobeno, unless

P = N P .

THEOREM1IfP!=NP,thereexistsnoc-approximationalgorithmforthetravelingsalesman

problem, i.e., there exists no polynomial-time approximation algorithm for this problem so

that for all instances

Nearest-neighbouralgorithm

Thefollowingwell-knowngreedyalgorithmisbasedonthenearest-neighborheuristic: always

go next to the nearest unvisited city.

Step1Chooseanarbitrarycityasthestart.

Step 2Repeatthe followingoperationuntilallthecitieshavebeenvisited:gotothe unvisited city

nearest the one visited last (ties can be broken arbitrarily).

Step3Returntothestartingcity.

EXAMPLE1 Fortheinstancerepresentedbythe graphinFigure 12.10,withaasthestarting

vertex, the nearest-neighbor algorithm yields the tour (Hamiltonian

circuit)sa:a− b−c −d−aoflength10.

Theoptimalsolution,ascanbeeasilycheckedbyexhaustivesearch,isthe

tours∗: a−b−d −c−aoflength8.Thus,theaccuracyratioofthisapproximationis

Unfortunately,exceptforitssimplicity,notmanygoodthingscanbesaidaboutthenearest-

neighbor algorithm. In particular, nothing can be said in general about the accuracy of

solutions obtained by this algorithm because it can force us to traverse a very long edge on

the last leg of the tour.Indeed, if we change the weight of edge (a, d) from6 to an arbitrary

large number w ≥ 6 in Example 1, the algorithm will still yield the tour a − b − c − d − a of

length 4 + w, and the optimal solution will still be a − b − d − c − a of length 8. Hence,

whichcanbemadeaslarge aswewishby choosinganappropriatelylargevalueofw. Hence, RA=

∞ for this algorithm (as it should be according to Theorem 1).

Twice-around-the-treealgorithm

Step1Constructaminimumspanningtreeofthegraphcorrespondingtoagiveninstanceof the

traveling salesman problem.

Step 2Startingatanarbitraryvertex,performawalkaroundtheminimumspanning tree

recording all the vertices passed by. (This can be done by a DFS traversal.)

Step3ScanthevertexlistobtainedinStep2andeliminatefromit allrepeatedoccurrences of the

same vertex except the starting one at the end of the list. (This step is equivalent to making

shortcuts in the walk.) The vertices remaining on the list will form a Hamiltonian circuit,

which is the output of the algorithm.

EXAMPLE 2 Let us apply this algorithm to the graph in Figure 12.11a. The minimum

spanningtreeofthisgraphismadeupofedges(a,b),(b,c),(b, d),and(d, e).Atwice-

around-the-treewalkthatstartsandendsatais

a,b,c,b,d,e,d,b,a.

Eliminatingthesecondb(ashortcutfromctod),the secondd,andthethirdb(ashortcut from e to

a) yields the Hamiltonian circuit

a,b,c,d,e,a

oflength39.

ThetourobtainedinExample2isnotoptimal.Althoughthatinstanceissmallenoughtofind an

optimal solution by either exhaustive search or branch-and-bound, we refrained from doing

so to reiterate a general point. As a rule, we do not know what the length of an

optimaltouractually is,and thereforewecannotcomputetheaccuracyratio f (sa)/f(s∗). For the

twice-around-the-tree algorithm, we can at least estimate it above, provided the graphis

Euclidean.

Fermat'sLittleTheorem:

Ifnisaprimenumber,thenforeverya,1<a<n-1,

an-1≡1(modn)OR

an-1%n=1

Example:Since 5isprime,24≡1(mod5)[or24%5=1],

34≡1(mod5)and44≡1(mod5)

Since7isprime,26≡ 1(mod7),

36≡1(mod7),46≡1(mod7)

56≡1(mod7)and66≡1(mod7)

Algorithm

1) Repeatfollowingktimes:

a) Pickarandomlyinthe range[2,n-2]

b) Ifgcd(a,n)≠1,thenreturn false

c) Ifan-1≢1(modn),thenreturnfalse

2) Returntrue[probablyprime].

Unlikemergesort,we don’tneedtomerge thetwosortedarrays.ThusQuicksortrequires lesser

auxiliary space than Merge Sort, which is why it is often preferred to Merge Sort.

UsingarandomlygeneratedpivotwecanfurtherimprovethetimecomplexityofQuickSort.

Algorithmforrandompivoting

partition(arr[],lo,hi)

https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
https://www.geeksforgeeks.org/merge-sort/

pivot=arr[hi]

i = lo //placeforswapping

for j := lo to hi – 1 do

if arr[j] <= pivot then

swaparr[i]witharr[j] i

= i + 1

swaparr[i]witharr[hi] return

i

partition_r(arr[],lo,hi)

r=RandomNumberfromlotohi Swap

arr[r] and arr[hi]

returnpartition(arr,lo,hi)

quicksort(arr[], lo, hi)

iflo<hi

p=partition_r(arr,lo,hi)

quicksort(arr, lo , p-1)

quicksort(arr, p+1, hi)

Findingkthsmallestelement

ProblemDescription:GivenanarrayA[]ofnelementsandapositiveintegerK,findtheKth smallest

element in the array. It is given that all array elements are distinct.

ForExample:

Input :A[]={10,3,6,9,2,4,15,23},K=4

Output:6

Input:A[]={5,-8,10,37,101,2,9},K=6

Output:37

Quick-Select:Approachsimilartoquicksort

Thisapproachissimilartothe quicksortalgorithmwhereweusethepartitionontheinput array

recursively. But unlike quicksort, which processes both sides of the array recursively, this

algorithm works on only one side of the partition. We recur for either the left or right side

according to the position of pivot.

SolutionSteps

1. PartitionthearrayA[left..right]intotwosubarraysA[left..pos]andA[pos+1..right]such that each

element of A[left .. pos] is less than each element of A[pos + 1 .. right].

2. ComputesthenumberofelementsinthesubarrayA[left..pos]i.e.count=pos-left+1

3. if(count==K),thenA[pos]istheKthsmallestelement.

4. OtherwisedeterminesinwhichofthetwosubarraysA[left..pos-1]andA[pos+1 ..right] the Kth

smallest element lies.

 If(count>K)thenthedesiredelementliesontheleftsideofthe partition

 If (count < K), then the desired element lies on the right side of the partition. Since we

alreadyknowivaluesthataresmallerthanthekthsmallestelementofA[left..right],the desired

element is the (K - count)th smallest element of A[pos + 1 .. right].

 Basecaseisthescenarioofsingleelementarrayi.eleft==right.returnA[left]orA[right].

Pseudo-Code

//Originalvalueforleft=0andright=n-1

intkthSmallest(intA[],intleft,intright,intK)

{

if(left== right)

returnA[left]

intpos=partition(A,left,right)

count = pos - left + 1

if(count==K)

returnA[pos]

elseif(count>K)

returnkthSmallest(A,left,pos-1,K)

else

returnkthSmallest(A,pos+1,right,K-i)

}

intpartition(intA[],intl,intr)

{

intx=A[r]

inti=l-1

for (j=ltor-1)

{

if(A[j]<= x)

{

i = i + 1

swap(A[i],A[j])

}

}

swap(A[i+1],A[r])

returni+1

}

ComplexityAnalysis

TimeComplexity:Theworst-case timecomplexityforthisalgorithmisO(n²),but itcanbe

improved if we choose the pivot element randomly. If we randomly select the pivot, the

expected time complexity would be linear, O(n).

	CS3401-ALGORITHMS UNIT 1
	ΘNotation(theta)
	ΩNotation
	BigONotation
	BigOnotationexampleofAlgorithms
	Example1:Findingthesumofthefirstn numbers.
	O(1)solution

	intfindSum(intn)
	O(n)solution

	intfindSum(intn) (1)
	O(n²)solution

	intfindSum(intn) (2)
	RecurrenceRelation

	Searching
	LinearSearch
	TheComplexityofLinearSearchAlgorithm
	BestCase Complexity
	WorstCaseComplexity
	AverageCaseComplexity
	SpaceComplexityofLinearSearchAlgorithm
	ApplicationofLinearSearchAlgorithm
	CodeImplementationofLinearSearchAlgorithm
	Algorithm
	Procedurebinary_search
	WorkingofBinarysearch
	ImplementationofBinarySearch
	18. else
	36. else
	Output
	ImplementationofinterpolationinC
	TimeComplexity
	 Worst-case-O(n)
	 Averagecase-O(log(log(n)))
	SpaceComplexity

	PatternSearch
	Algorithm
	ImplementationinC
	Rabin-Karpmatchingpattern
	Let’stakeanexampletounderstandtheproblem,

	Sorting:Insertionsort
	Algorithm (1)
	SpaceComplexity O(1)

	HeapSort
	HeapSortAlgorithm
	BuildMaxHeap(arr)
	MaxHeapify(arr,i)
	WorkingofHeapsortAlgorithm
	UNIT2-GRAPHS:basics,representation, traversals, and application

	DFS–DepthFirstSearch
	ApplicationofDFSAlgorithm

	BreadthFirstSearch
	BFSpseudocode
	BFSAlgorithmComplexity
	BFSAlgorithmApplications
	Connectedgraph,StronglyconnectedandBi-Connectivity Connected Graph Component
	StronglyConnectedGraph
	BiConnectivityGraph
	PseudocodeforBi connectivity
	isArticulation(start,visited,disc,low,parent)
	isBiconnected(graph)

	MinimumSpanningTree
	AlgorithmsforfindingMinimumSpanning Tree(MST):-

	Prim’sAlgorithm
	Prim'sAlgorithm pseudocode
	Prim'sAlgorithmComplexity

	KruskalAlgorithm
	HowKruskal'salgorithmworks
	ExampleofKruskal'salgorithm
	KruskalAlgorithmPseudocode

	ShortestPathAlgorithm
	BellmanAlgorithm
	HowBellmanFord'salgorithmworks
	BellmanFordPseudocode

	DijkstraAlgorithm
	HowDijkstra'sAlgorithmworks
	ExampleofDijkstra'salgorithm
	Djikstra'salgorithmpseudocode
	Dijkstra'sAlgorithmComplexity

	FloydWarshallAlgorithm
	HowFloyd-WarshallAlgorithmWorks?
	Floyd-WarshallAlgorithm
	TimeComplexity

	NetworkFlow
	Ford-FulkersonAlgorithm
	FORD-FULKERSONMETHOD(G,s,t)
	FORD-FULKERSON(G,s,t)

	MaximumBipartiteMatching
	Algorithm
	bipartiteMatch(u,visited,assign)

	Unit3
	HowDivideandConquerAlgorithmsWork?
	FindingMaximumand Minimum
	NaïveMethod
	DivideandConquer Approach
	Algorithm:Max-Min(x,y)

	MergeSort
	DivideandConquer Strategy
	Divide
	Conquer
	Combine
	MergeSort Algorithm
	Time Complexity
	BasicFeaturesofDynamicprogramming:-
	Thebasicalgorithmofmatrixchainmultiplication:-
	MatrixChainMultiplication(intdims[])
	n=dims.length -1;
	for(i=1;i<=n;i++) m[i, i] = 0;
	if(cost<m[i,j]){ m[i, j] = cost;
	ExampleofMatrixChainMultiplication
	CalculationofProductof2matrices:
	Nowproductof3 matrices:
	M[1,3]=264
	M[2,4]=1320
	M[1,4]=1080
	NowProductof5matrices:
	FinalOutputis:
	end
	end (1)
	Stage4:
	Stage2:
	Stage1:
	Tracethe solution:
	Mathematicalformulation
	AlgorithmforOptimalBinarySearchTree
	end (2)
	end end
	ComplexityAnalysisofOptimalBinarySearchTree
	DownloadedfromEnggTree.com
	Now,we willcompute e[i,j]
	Algorithm
	Complexity

	UNIT4
	NqueenProblem
	4-Queenssolutionspacewithnodesnumberedin DFS

	DownloadedfromEnggTree.com
	7. returntrue;
	9. else

	HamiltonianCircuit
	Algorithm
	if
	then if
	then
	else
	end end
	for
	do if
	then (1)
	end end if
	then (2)
	else (1)
	DownloadedfromEnggTree.com
	ComplexityAnalysis
	Example:FindtheHamiltoniancyclebyusingthebacktrackingapproachforagivengraph.

	SubsetSum Problem
	AlgorithmforSumofsubsets
	GraphColouring
	isValid(vertex,colorList,col)

	DownloadedfromEnggTree.com
	graphColoring(colors,colorList,vertex)

	BranchandBound
	Solving15puzzleProblem(LCBB)

	AssignmentProblem
	ProblemStatement
	BranchandBoundAlgorithmPseudocode
	Advantages
	Disadvantages

	KnapsackProblemusingbranchandbound
	ProblemStatement
	TimeandSpaceComplexity
	SolvinganExample

	Travellingsalesmanproblem
	LCBBusingStaticStateSpaceTreeforTravellingSalsemanProblem
	RawReduction:
	Columnreduction:
	DownloadedfromEnggTree.com
	Statespacetree
	Selectedge1-2:
	Selectedge1-3

	DownloadedfromEnggTree.com (1)
	Selectedge1-4:
	Selectedge1-5:
	Statespacediagram:
	Selectpath1-4-2:(Addedge4-2)

	DownloadedfromEnggTree.com (2)
	Selectedge4-3(Path1-4-3):
	Selectedge4-5(Path1-4-5):

	DownloadedfromEnggTree.com (3)
	Addedge2-3(Path1-4-2-3):
	Addedge2-5(Path1-4-2-5):

	DownloadedfromEnggTree.com (4)
	Statespacetree
	Statespacetree:

	UNIT5
	P(Polynomial)problems
	NP(Non-deterministicPolynomial)Problems
	NP-HardProblems
	NP-CompleteProblems

	BinPackingproblem
	1) NextFitalgorithm
	VisualRepresentation
	AnalyzingtheapproximationratioofNext-Fitalgorithm
	Psuedocode
	2) FirstFitalgorithm
	VisualRepresentation (1)
	AnalyzingtheapproximationratioofNext-Fitalgorithm (1)
	Psuedocode (1)
	3) BestFitAlgorithm
	VisualRepresentation (2)
	AnalyzingtheapproximationratioofBest-Fitalgorithm
	AnalysisOfupper-boundofBest-Fitalgorithm
	Psuedocode (2)
	1) FirstFitDecreasing
	Algorithm
	VisualRepresentation (3)
	2) BestFitDecreasing
	Algorithm (1)
	VisualRepresentation (4)

	ApproximationAlgorithmsfortheTravelingSalesmanProblem
	Nearest-neighbouralgorithm
	Twice-around-the-treealgorithm
	a,b,c,b,d,e,d,b,a.
	a,b,c,d,e,a

	Fermat'sLittleTheorem:

	Findingkthsmallestelement
	ForExample:
	Quick-Select:Approachsimilartoquicksort
	SolutionSteps
	Pseudo-Code

	else
	ComplexityAnalysis

