AALIM MUHAMMED SALEGH COLLEGE OF ENGINEERING, MUTHAPUDUPET, AVADI-IAF, CHENNAI-600055

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MODEL EXAMINATION OUESTION PAPER-3

SUBJECT CODE: EC2253

SUBJECT NAME: ELECTROMAGENTIC FIELDS

MARKS:100

PART-A

(10*2=20)

- 1. Write down expression for x,y,z in terms of spherical co-ordinates r, θ , Φ ?
- 2. What is physical significance of divergence of D?
- 3.Define electric field and electric potential?
- 4. Write down the expression for the torque experienced by a current carrying loop situated in a magnetic field.
- 5. State the applications of Poisson's equation and Laplace's equation.
- 6. What is Polarization?
- 7. State point form of ohm's law
- 8. Distinguish between Field theory and Circuit theory
- 9. What is skin depth?
- 10. Write down the wave equation for E and H in a conducting medium

PART-B (16*5=80)

11 a) State and prove Stoke's theorem and Divergence theorem. (16)

OR

- b) A circular disc of radius 'a' m is charged uniformly with a charge density of σ c/ m2.find the electric field at a point 'h' m from the disc along its axis. (16)
- 12. a (i) Derive the expression for the magnetic field intensity due to rectangular coil carrying current I in a uniform field. Deduce the equation to find the H due to square coil (10)
 - (ii). State Ampere's circuital law and prove the same. (6)

OR

- b)Derive the expressions for magnetic field intensity and magnetic flux density due to circular coil.(16)
- 13 . a) Derive the boundary conditions of the normal and tangential components of electric field at the interface of two media with different dielectrics. (16)

OR

- b) Derive an expression for energy stored and energy density in an Electrostatic field (16)
- 14 a) With necessary explanation, derive the Maxwell's equation in differential and integral forms (16)

ΩR

- b(i) What is the physical significance of the poynting vector? (4)
- (ii) State and explain the poynting theorem. (12)
- 15 a) Briefly explain about the wave incident
 - (i) Normally on perfect conductor
 - (ii) Obliquely to the surface of perfect conductor. (16)

ÔR

b)A plane wave propagating through a medium with $_r$ =8, μ r=2 has E=0.5 sin (108t-z) az v/m. Determine(i) β ,(ii) The loss tangent,(iii) wave impedance,(iv) wave velocity,(v) magnetic field. (16)